期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于空间离散的最短路径求解法及其局部优化方法 被引量:2
1
作者 江顺亮 范勤儒 《南昌大学学报(理科版)》 CAS 北大核心 2003年第2期178-184,共7页
提出了一种基于空间离散的最短路径求解法,该法利用复杂表面的空间离散信息,从已知的两点中估算与其相连的一点的距离,递推式求取一点与其他点之间的最短距离。计算获得了各点与起点和终点的距离后,再把它们相加,依据与起点的距离的大小... 提出了一种基于空间离散的最短路径求解法,该法利用复杂表面的空间离散信息,从已知的两点中估算与其相连的一点的距离,递推式求取一点与其他点之间的最短距离。计算获得了各点与起点和终点的距离后,再把它们相加,依据与起点的距离的大小,顺序把距离和最小的结点连接起来,这样获得了最短路径的邻域路径,然后对最短路径的邻域路径的各点进行迭代式更新,从而获得局部优化,最终获得最短路径。经过对例子的计算及分析,表明该方法普适性强、可靠及有效。 展开更多
关键词 计算机图形学 最短路径求解法 空间离散 局部优化方法 最短距离 邻域路径
下载PDF
基于聚类的差分进化算法的两阶段最优潮流方法 被引量:4
2
作者 田玮 江晓东 《电力系统及其自动化学报》 CSCD 北大核心 2021年第11期50-55,共6页
差分进化算法是一种广泛应用于求解非线性优化问题的全局最优解的元启发式方法,但存在容易找到次优解或近似局部最优解的问题。为此,提出了一种求解高质量局部最优解甚至全局最优解的基于聚类的差分进化算法的两阶段方法,并将该方法应... 差分进化算法是一种广泛应用于求解非线性优化问题的全局最优解的元启发式方法,但存在容易找到次优解或近似局部最优解的问题。为此,提出了一种求解高质量局部最优解甚至全局最优解的基于聚类的差分进化算法的两阶段方法,并将该方法应用于电力系统最优潮流问题。所提方法由基于聚类的差分进化算法和局部优化算法组成。第Ⅰ阶段是基于聚类的差分进化算法利用强大的全局搜索能力快速确定包含局部最优解的区域;第Ⅱ阶段是局部优化算法利用局部寻优能力为非线性优化问题高效寻找高质量的局部最优解甚至全局最优解。在一组基准函数上测试了该两阶段优化方法的求解性能,并通过对IEEE 118节点电力系统最优潮流的计算,验证了所提两阶段优化方法的有效性和实用性。 展开更多
关键词 非线性优化问题 差分进化算法 局部优化方法 最优潮流计算
下载PDF
Locally linear embedding-based seismic attribute extraction and applications 被引量:5
3
作者 刘杏芳 郑晓东 +2 位作者 徐光成 王玲 杨昊 《Applied Geophysics》 SCIE CSCD 2010年第4期365-375,400,401,共13页
How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle co... How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle component analysis(PCA) is the most widely-used linear dimensionality reduction method at present.However,the relationships between seismic attributes and reservoir features are non-linear,so seismic attribute dimensionality reduction based on linear transforms can't solve non-linear problems well,reducing reservoir prediction precision.As a new non-linear learning method,manifold learning supplies a new method for seismic attribute analysis.It can discover the intrinsic features and rules hidden in the data by computing low-dimensional,neighborhood-preserving embeddings of high-dimensional inputs.In this paper,we try to extract seismic attributes using locally linear embedding(LLE),realizing inter-horizon attributes dimensionality reduction of 3D seismic data first and discuss the optimization of its key parameters.Combining model analysis and case studies,we compare the dimensionality reduction and clustering effects of LLE and PCA,both of which indicate that LLE can retain the intrinsic structure of the inputs.The composite attributes and clustering results based on LLE better characterize the distribution of sedimentary facies,reservoir,and even reservoir fluids. 展开更多
关键词 attribute optimization dimensionality reduction locally linear embedding(LLE) manifold learning principle component analysis(PCA)
下载PDF
Optimal four-impulse rendezvous between coplanar elliptical orbits 被引量:6
4
作者 WANG JianXia BAOYIN HeXi +1 位作者 LI JunFeng SUN FuChun 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第4期792-802,共11页
Rendezvous in circular or near circular orbits has been investigated in great detail, while rendezvous in arbitrary eccentricity elliptical orbits is not sufficiently explored. Among the various optimization methods p... Rendezvous in circular or near circular orbits has been investigated in great detail, while rendezvous in arbitrary eccentricity elliptical orbits is not sufficiently explored. Among the various optimization methods proposed for fuel optimal orbital rendezvous, Lawden's primer vector theory is favored by many researchers with its clear physical concept and simplicity in solu- tion. Prussing has applied the primer vector optimization theory to minimum-fuel, multiple-impulse, time-fixed orbital ren- dezvous in a near circular orbit and achieved great success. Extending Prussing's work, this paper will employ the primer vec- tor theory to study trajectory optimization problems of arbitrary eccentricity elliptical orbit rendezvous. Based on linearized equations of relative motion on elliptical reference orbit (referred to as T-H equations), the primer vector theory is used to deal with time-fixed multiple-impulse optimal rendezvous between two coplanar, coaxial elliptical orbits with arbitrary large ec- centricity. A parameter adjustment method is developed for the prime vector to satisfy the Lawden's necessary condition for the optimal solution. Finally, the optimal multiple-impulse rendezvous solution including the time, direction and magnitudes of the impulse is obtained by solving the two-point boundary value problem. The rendezvous error of the linearized equation is also analyzed. The simulation results confirmed the analyzed results that the rendezvous error is small for the small eccentric- ity case and is large for the higher eccentricity. For better rendezvous accuracy of high eccentricity orbits, a combined method of multiplier penalty function with the simplex search method is used for local optimization. The simplex search method is sensitive to the initial values of optimization variables, but the simulation results show that initial values with the primer vector theory, and the local optimization algorithm can improve the rendezvous accuracy effectively with fast convergence, because the optimal results obtained by the primer vector theory are already very close to the actual optimal solution. 展开更多
关键词 If the initial values are taken randomly it is difficult to converge to the optimal solution. elliptical orbit rendezvous primer vector fuel optimal
原文传递
Linear response eigenvalue problem solved by extended locally optimal preconditioned conjugate gradient methods
5
作者 BAI ZhaoJun LI RenCang LIN WenWei 《Science China Mathematics》 SCIE CSCD 2016年第8期1443-1460,共18页
The locally optimal block preconditioned 4-d conjugate gradient method(LOBP4dC G) for the linear response eigenvalue problem was proposed by Bai and Li(2013) and later was extended to the generalized linear response e... The locally optimal block preconditioned 4-d conjugate gradient method(LOBP4dC G) for the linear response eigenvalue problem was proposed by Bai and Li(2013) and later was extended to the generalized linear response eigenvalue problem by Bai and Li(2014). We put forward two improvements to the method: A shifting deflation technique and an idea of extending the search subspace. The deflation technique is able to deflate away converged eigenpairs from future computation, and the idea of extending the search subspace increases convergence rate per iterative step. The resulting algorithm is called the extended LOBP4 dC G(ELOBP4dC G).Numerical results of the ELOBP4 dC G strongly demonstrate the capability of deflation technique and effectiveness the search space extension for solving linear response eigenvalue problems arising from linear response analysis of two molecule systems. 展开更多
关键词 eigenvalue problem linear response DEFLATION conjugate-gradient DEFLATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部