多轮对话是人工智能领域的一个重要分支.如何从多轮对话上下文中正确提取与问题相关的核心内容是多轮对话任务的关键问题.现有模型存在辅助任务低效,对全局与局部信息的筛选不够充分,对较短的多轮对话数据学习能力不足等问题.针对上述问...多轮对话是人工智能领域的一个重要分支.如何从多轮对话上下文中正确提取与问题相关的核心内容是多轮对话任务的关键问题.现有模型存在辅助任务低效,对全局与局部信息的筛选不够充分,对较短的多轮对话数据学习能力不足等问题.针对上述问题,本文提出了一种局部信息增强且能够感知对话结构的多轮对话模型(Structure-aware Dialogue Model with Fine-grained Local Information,SAFL).针对子任务训练代价大的问题,提出了随机滑动窗口回复预测任务,在多轮对话上下文中的不同位置与大小的窗口内进行回复预测,充分学习细粒度的局部对话语义.针对信息筛选不够充分的问题,提出了重点局部信息蒸馏机制,借助多门控融合方法从全局和局部信息之中蒸馏出重点信息,提升模型融合效果.针对模型对较短的多轮对话上下文学习能力不足的问题,提出阶段信息学习机制,在微调前加强预训练语言模型对短多轮对话数据的领域学习,降低微调阶段中对短多轮对话的学习难度.此外,SAFL设计了对话结构感知任务在对话结构方面进一步加强模型对对话上下文的理解能力.Ubuntu和E-commerce数据集上的实验结果表明,SAFL模型的总体性能优于对比模型.展开更多
预测进阀温度的变化趋势对阀冷系统的运行状态有重要参考价值.针对传统方法存在数据收集时间跨度大和传感器存在误差等问题,本文提出了一种基于对抗扰动和局部信息增强的进阀温度预测模型Robust-InTemp.具体来说,Robust-InTemp通过对原...预测进阀温度的变化趋势对阀冷系统的运行状态有重要参考价值.针对传统方法存在数据收集时间跨度大和传感器存在误差等问题,本文提出了一种基于对抗扰动和局部信息增强的进阀温度预测模型Robust-InTemp.具体来说,Robust-InTemp通过对原始数据添加基于规则的高斯噪声,并使用基于梯度的对抗训练方法(projected gradient descent,PGD),增强了模型的泛化能力和抵抗噪声干扰的鲁棒性.同时,引入相对位置编码、一维卷积以及门控线性单元(gated linear unit,GLU),以增强模型对局部特征的学习能力,从而提高预测准确性.实验结果表明,与多种基准模型相比,Robust-InTemp在预测性能和抗干扰能力方面均有明显优势,进一步的消融实验也验证了模型中各个组件的有效性.展开更多
针对乳腺核磁共振成像的灰度不均匀现象,提出一种融合全局和局部信息的水平集图像分割方法(global and local combined C_V,GLCCV)。该方法将图像的局部信息融入基于全局信息的Chan-Vese(C_V)水平集方法;根据局部灰度拟合均值占全局灰...针对乳腺核磁共振成像的灰度不均匀现象,提出一种融合全局和局部信息的水平集图像分割方法(global and local combined C_V,GLCCV)。该方法将图像的局部信息融入基于全局信息的Chan-Vese(C_V)水平集方法;根据局部灰度拟合均值占全局灰度均值的比例,构造自适应平衡指示函数调节全局和局部效应之间的均衡;加入惩罚项以避免重新初始化。对比实验表明,该水平集分割模型能够有效分割多种灰度不均匀场景下的乳腺MR图像,在抗噪和精确性方面优于融合前的分割方法。展开更多
文摘多轮对话是人工智能领域的一个重要分支.如何从多轮对话上下文中正确提取与问题相关的核心内容是多轮对话任务的关键问题.现有模型存在辅助任务低效,对全局与局部信息的筛选不够充分,对较短的多轮对话数据学习能力不足等问题.针对上述问题,本文提出了一种局部信息增强且能够感知对话结构的多轮对话模型(Structure-aware Dialogue Model with Fine-grained Local Information,SAFL).针对子任务训练代价大的问题,提出了随机滑动窗口回复预测任务,在多轮对话上下文中的不同位置与大小的窗口内进行回复预测,充分学习细粒度的局部对话语义.针对信息筛选不够充分的问题,提出了重点局部信息蒸馏机制,借助多门控融合方法从全局和局部信息之中蒸馏出重点信息,提升模型融合效果.针对模型对较短的多轮对话上下文学习能力不足的问题,提出阶段信息学习机制,在微调前加强预训练语言模型对短多轮对话数据的领域学习,降低微调阶段中对短多轮对话的学习难度.此外,SAFL设计了对话结构感知任务在对话结构方面进一步加强模型对对话上下文的理解能力.Ubuntu和E-commerce数据集上的实验结果表明,SAFL模型的总体性能优于对比模型.
文摘预测进阀温度的变化趋势对阀冷系统的运行状态有重要参考价值.针对传统方法存在数据收集时间跨度大和传感器存在误差等问题,本文提出了一种基于对抗扰动和局部信息增强的进阀温度预测模型Robust-InTemp.具体来说,Robust-InTemp通过对原始数据添加基于规则的高斯噪声,并使用基于梯度的对抗训练方法(projected gradient descent,PGD),增强了模型的泛化能力和抵抗噪声干扰的鲁棒性.同时,引入相对位置编码、一维卷积以及门控线性单元(gated linear unit,GLU),以增强模型对局部特征的学习能力,从而提高预测准确性.实验结果表明,与多种基准模型相比,Robust-InTemp在预测性能和抗干扰能力方面均有明显优势,进一步的消融实验也验证了模型中各个组件的有效性.
文摘针对乳腺核磁共振成像的灰度不均匀现象,提出一种融合全局和局部信息的水平集图像分割方法(global and local combined C_V,GLCCV)。该方法将图像的局部信息融入基于全局信息的Chan-Vese(C_V)水平集方法;根据局部灰度拟合均值占全局灰度均值的比例,构造自适应平衡指示函数调节全局和局部效应之间的均衡;加入惩罚项以避免重新初始化。对比实验表明,该水平集分割模型能够有效分割多种灰度不均匀场景下的乳腺MR图像,在抗噪和精确性方面优于融合前的分割方法。