期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
局部信息保持极限学习机的遥感图像分类 被引量:7
1
作者 何阳 闫德勤 刘德山 《计算机应用与软件》 北大核心 2019年第1期263-270,324,共9页
极限学习机ELM(Extreme learning machine)以其简单快速和良好的泛化能力在模式识别和机器学习领域得到了广泛的应用。近年来,研究人员将其应用到高光谱遥感图像分类问题中。然而,由于数据样本有限,极限学习机及其相关技术在遥感图像中... 极限学习机ELM(Extreme learning machine)以其简单快速和良好的泛化能力在模式识别和机器学习领域得到了广泛的应用。近年来,研究人员将其应用到高光谱遥感图像分类问题中。然而,由于数据样本有限,极限学习机及其相关技术在遥感图像中存在数据学习不充分的问题。流形学习算法揭示了数据内在的几何结构信息。根据遥感图像的特点,基于流形学习的思想,将遥感图像数据样本的流行结构引入到ELM模型中,提出一种基于局部信息保持极限学习机LPKELM(locality information preserving extreme learning machine)。为了验证所提算法的有效性,使用两个高光谱遥感图像数据集进行实验。实验结果表明,LPKELM的分类性能优于SVM、KELM、KCRT-CK和MLR算法。 展开更多
关键词 极限学习机 模式识别 高光谱遥感图像 局部信息保持
下载PDF
加权空-谱局部信息保持极限学习机的高光谱图像分类算法 被引量:1
2
作者 邢钰佳 闫德勤 +1 位作者 刘德山 王军浩 《软件》 2020年第7期113-119,135,共8页
高光谱图像的分类研究是高光谱图像处理与应用的重要环节。为有效提取高光谱遥感图像的空间信息和光谱信息,本文基于极限学习机提出新的研究。在模式识别和机器学习领域,极限学习机以其简单、快捷和良好的泛化能力得到越来越多的关注。... 高光谱图像的分类研究是高光谱图像处理与应用的重要环节。为有效提取高光谱遥感图像的空间信息和光谱信息,本文基于极限学习机提出新的研究。在模式识别和机器学习领域,极限学习机以其简单、快捷和良好的泛化能力得到越来越多的关注。但由于在高光谱遥感图像的学习过程中极限学习机缺乏对空间信息和光谱信息的有效提取,无法在分类中提供良好的分类结果。为此,基于谱局部信息的思想构造本文的研究框架,提出一种加权空-谱局部信息保持极限学习机分类算法。为验证所提算法的有效性,本文在两组常用的高光谱数据集IndianPines和UniversityofPavia上进行实验,通过与传统的分类算法SVM和目前较为流行的分类算法KELM,KCRT-CK,MLR和LPKELM相比,本文算法具有较好的分类精度。 展开更多
关键词 极限学习机 高光谱遥感图像分类 加权空-谱 局部信息保持
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部