期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
螺旋锥齿轮制造技术对比研究及应用 被引量:3
1
作者 李党育 《机械制造》 2014年第2期47-50,共4页
针对螺旋锥齿轮制造加工理论进行研究,分析了局部共轭理论、局部综合法、三阶接触分析等加工理论之间的差异点。通过CAGE 4Win、GSHgears、Hyspiral计算机程序应用对比分析,对齿轮加工理论进行验证,有助于螺旋锥齿轮加工新技术的推广应... 针对螺旋锥齿轮制造加工理论进行研究,分析了局部共轭理论、局部综合法、三阶接触分析等加工理论之间的差异点。通过CAGE 4Win、GSHgears、Hyspiral计算机程序应用对比分析,对齿轮加工理论进行验证,有助于螺旋锥齿轮加工新技术的推广应用,提高螺旋锥齿轮设计和加工质量。 展开更多
关键词 螺旋锥齿轮 局部共轭理论 局部综合法 三阶接触分析 齿面接触分析(TCA)
下载PDF
The Presentation Problem of the Conjugate Cone of the Hardy Space Hp(0 < p≤1) 被引量:6
2
作者 Jianyong WANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2013年第4期541-556,共16页
The Hardy space Hpis not locally convex if 0 < p < 1, even though its conjugate space(Hp) separates the points of Hp. But then it is locally p-convex, and its conjugate cone(Hp) p is large enough to separate the... The Hardy space Hpis not locally convex if 0 < p < 1, even though its conjugate space(Hp) separates the points of Hp. But then it is locally p-convex, and its conjugate cone(Hp) p is large enough to separate the points of Hp. In this case, the conjugate cone can be used to replace its conjugate space to set up the duality theory in the p-convex analysis. This paper deals with the representation problem of the conjugate cone(Hp) p of Hpfor 0 < p ≤ 1, and obtains the subrepresentation theorem(Hp) p L∞(T, C p). 展开更多
关键词 Locally p-convex space Hardy space Normed conjugate cone Shadowcone Subrepresentation theorem
原文传递
QUASI-LOCAL CONJUGACY THEOREMS IN BANACH SPACES
3
作者 ZHANG WEIRONG MA JIPu 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2005年第4期551-558,共8页
Let f : U(x0) belong to E → F be a C^1 map and f'(x0) be the Frechet derivative of f at x0. In local analysis of nonlinear functional analysis, implicit function theorem, inverse function theorem, local surject... Let f : U(x0) belong to E → F be a C^1 map and f'(x0) be the Frechet derivative of f at x0. In local analysis of nonlinear functional analysis, implicit function theorem, inverse function theorem, local surjectivity theorem, local injectivity theorem, and the local conjugacy theorem are well known. Those theorems are established by using the properties: f'(x0) is double splitting and R(f'(x)) ∩ N(T0^+) = {0} near x0. However, in infinite dimensional Banach spaces, f'(x0) is not always double splitting (i.e., the generalized inverse of f(x0) does not always exist), but its bounded outer inverse of f'(x0) always exists. Only using the C^1 map f and the outer inverse To^# of f(x0), the authors obtain two quasi-local conjugacy theorems, which imply the local conjugacy theorem if x0 is a locally fine point of f. Hence the quasi-local conjugacy theorems generalize the local conjugacy theorem in Banach spaces. 展开更多
关键词 Frechet derivative Quasi-local conjugacy theorems Outer inverse Local conjugacy theorem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部