The Hardy space Hpis not locally convex if 0 < p < 1, even though its conjugate space(Hp) separates the points of Hp. But then it is locally p-convex, and its conjugate cone(Hp) p is large enough to separate the...The Hardy space Hpis not locally convex if 0 < p < 1, even though its conjugate space(Hp) separates the points of Hp. But then it is locally p-convex, and its conjugate cone(Hp) p is large enough to separate the points of Hp. In this case, the conjugate cone can be used to replace its conjugate space to set up the duality theory in the p-convex analysis. This paper deals with the representation problem of the conjugate cone(Hp) p of Hpfor 0 < p ≤ 1, and obtains the subrepresentation theorem(Hp) p L∞(T, C p).展开更多
Let f : U(x0) belong to E → F be a C^1 map and f'(x0) be the Frechet derivative of f at x0. In local analysis of nonlinear functional analysis, implicit function theorem, inverse function theorem, local surject...Let f : U(x0) belong to E → F be a C^1 map and f'(x0) be the Frechet derivative of f at x0. In local analysis of nonlinear functional analysis, implicit function theorem, inverse function theorem, local surjectivity theorem, local injectivity theorem, and the local conjugacy theorem are well known. Those theorems are established by using the properties: f'(x0) is double splitting and R(f'(x)) ∩ N(T0^+) = {0} near x0. However, in infinite dimensional Banach spaces, f'(x0) is not always double splitting (i.e., the generalized inverse of f(x0) does not always exist), but its bounded outer inverse of f'(x0) always exists. Only using the C^1 map f and the outer inverse To^# of f(x0), the authors obtain two quasi-local conjugacy theorems, which imply the local conjugacy theorem if x0 is a locally fine point of f. Hence the quasi-local conjugacy theorems generalize the local conjugacy theorem in Banach spaces.展开更多
基金supported by the National Natural Science Foundation of China(No.10871141)
文摘The Hardy space Hpis not locally convex if 0 < p < 1, even though its conjugate space(Hp) separates the points of Hp. But then it is locally p-convex, and its conjugate cone(Hp) p is large enough to separate the points of Hp. In this case, the conjugate cone can be used to replace its conjugate space to set up the duality theory in the p-convex analysis. This paper deals with the representation problem of the conjugate cone(Hp) p of Hpfor 0 < p ≤ 1, and obtains the subrepresentation theorem(Hp) p L∞(T, C p).
基金Project supported by the National Natural Science Foundation of China (No. 10271053).
文摘Let f : U(x0) belong to E → F be a C^1 map and f'(x0) be the Frechet derivative of f at x0. In local analysis of nonlinear functional analysis, implicit function theorem, inverse function theorem, local surjectivity theorem, local injectivity theorem, and the local conjugacy theorem are well known. Those theorems are established by using the properties: f'(x0) is double splitting and R(f'(x)) ∩ N(T0^+) = {0} near x0. However, in infinite dimensional Banach spaces, f'(x0) is not always double splitting (i.e., the generalized inverse of f(x0) does not always exist), but its bounded outer inverse of f'(x0) always exists. Only using the C^1 map f and the outer inverse To^# of f(x0), the authors obtain two quasi-local conjugacy theorems, which imply the local conjugacy theorem if x0 is a locally fine point of f. Hence the quasi-local conjugacy theorems generalize the local conjugacy theorem in Banach spaces.