In this paper, we introduce the generalized R oper-Suffridge extension operator for locally biholomorphic mappings. It is sh own that this operator preserves the starlikeness on some Reinhardt domains and does not pre...In this paper, we introduce the generalized R oper-Suffridge extension operator for locally biholomorphic mappings. It is sh own that this operator preserves the starlikeness on some Reinhardt domains and does not preserve convexity for some cases. Meanwhile, the growth theorem and di stortion theorem of the corresponding mappings are given.展开更多
This paper deals with the locallyβ-convex analysis that generalizes the locally convex analysis. The second separation theorem in locallyβ-convex spaces, the Minkowski theorem and the Krein-Milman theorem in theβ-c...This paper deals with the locallyβ-convex analysis that generalizes the locally convex analysis. The second separation theorem in locallyβ-convex spaces, the Minkowski theorem and the Krein-Milman theorem in theβ-convex analysis are given. Moreover, it is obtained that the U F-boundedness and the U B-boundedness in its conjugate cone are equivalent if and only if X is subcomplete.展开更多
文摘In this paper, we introduce the generalized R oper-Suffridge extension operator for locally biholomorphic mappings. It is sh own that this operator preserves the starlikeness on some Reinhardt domains and does not preserve convexity for some cases. Meanwhile, the growth theorem and di stortion theorem of the corresponding mappings are given.
文摘This paper deals with the locallyβ-convex analysis that generalizes the locally convex analysis. The second separation theorem in locallyβ-convex spaces, the Minkowski theorem and the Krein-Milman theorem in theβ-convex analysis are given. Moreover, it is obtained that the U F-boundedness and the U B-boundedness in its conjugate cone are equivalent if and only if X is subcomplete.