目的针对不同视点下具有视差的待拼接图像中,特征点筛选存在漏检率高和配准精度低的问题,提出了一种基于特征点平面相似性聚类的图像拼接算法。方法根据相同平面特征点符合同一变换的特点,计算特征点间的相似性度量,利用凝聚层次聚类把...目的针对不同视点下具有视差的待拼接图像中,特征点筛选存在漏检率高和配准精度低的问题,提出了一种基于特征点平面相似性聚类的图像拼接算法。方法根据相同平面特征点符合同一变换的特点,计算特征点间的相似性度量,利用凝聚层次聚类把特征点划分为不同平面,筛选误匹配点。将图像划分为相等大小的网格,利用特征点与网格平面信息计算每个特征点的权重,通过带权重线性变换计算网格的局部单应变换矩阵。最后利用多频率融合方法融合配准图像。结果在20个不同场景图像数据上进行特征点筛选比较实验,随机抽样一致性(random sample consensus, RANSAC)算法的平均误筛选个数为30,平均误匹配个数为8,而本文方法的平均误筛选个数为3,平均误匹配个数为2。对20个不同场景的多视角图像,本文方法与AutoStitch(automatic stitching)、APAP(as projective as possible)和AANAP(adaptive as-natural-as-possible)等3种算法进行了图像拼接比较实验,本文算法相比性能第2的算法,峰值信噪比(peak signal to noise ratio,PSNR)平均提高了8.7%,结构相似性(structural similarity,SSIM)平均提高了9.6%。结论由本文提出的基于特征点平面相似性聚类的图像拼接算法处理后的图像保留了更多的特征点,因此提高了配准精度,能够取得更好的拼接效果。展开更多
文摘目的针对不同视点下具有视差的待拼接图像中,特征点筛选存在漏检率高和配准精度低的问题,提出了一种基于特征点平面相似性聚类的图像拼接算法。方法根据相同平面特征点符合同一变换的特点,计算特征点间的相似性度量,利用凝聚层次聚类把特征点划分为不同平面,筛选误匹配点。将图像划分为相等大小的网格,利用特征点与网格平面信息计算每个特征点的权重,通过带权重线性变换计算网格的局部单应变换矩阵。最后利用多频率融合方法融合配准图像。结果在20个不同场景图像数据上进行特征点筛选比较实验,随机抽样一致性(random sample consensus, RANSAC)算法的平均误筛选个数为30,平均误匹配个数为8,而本文方法的平均误筛选个数为3,平均误匹配个数为2。对20个不同场景的多视角图像,本文方法与AutoStitch(automatic stitching)、APAP(as projective as possible)和AANAP(adaptive as-natural-as-possible)等3种算法进行了图像拼接比较实验,本文算法相比性能第2的算法,峰值信噪比(peak signal to noise ratio,PSNR)平均提高了8.7%,结构相似性(structural similarity,SSIM)平均提高了9.6%。结论由本文提出的基于特征点平面相似性聚类的图像拼接算法处理后的图像保留了更多的特征点,因此提高了配准精度,能够取得更好的拼接效果。