期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多特征感知的时空自适应相关滤波目标跟踪
1
作者 孟庆姣 姜文涛 《计算机科学》 CSCD 北大核心 2023年第S02期191-199,共9页
针对正则化滤波器预先定义正则化项,但无法实时抑制非目标区域学习的缺点,提出了一种多特征感知的时空自适应相关滤波目标跟踪的新方法。首先在目标函数中引入空间局部响应变化量实现空间正则化,使滤波器专注于学习对象中值得信任的部分... 针对正则化滤波器预先定义正则化项,但无法实时抑制非目标区域学习的缺点,提出了一种多特征感知的时空自适应相关滤波目标跟踪的新方法。首先在目标函数中引入空间局部响应变化量实现空间正则化,使滤波器专注于学习对象中值得信任的部分,从而得到响应模型;其次根据全局响应变化决定滤波器的更新率;最后通过级联颜色直方图(Colour Name,CN)与降维后的梯度直方图(Fast Histogram of Oriented Gradient,fHOG)特征实现非卷积特征层面的融合,采用ImageNet-VGG-2048的Conv1,Conv5层提取目标的空间轮廓以及语义信息,并使用ReLU函数拟合训练数据,在保留主要信息的同时提高速率。在数据集DTB70上的精确率(0.747)和成功率(0.789)相较于STRCF算法的精确率(0.737)和成功率(0.760)分别提高了1%和2.9%。大量实验证明该算法在复杂背景、物体遮挡、快速运动等多种场景下基本能满足实时性需求。 展开更多
关键词 目标跟踪 相关滤波 时空自适应 局部响应与全局响应 卷积神经网络 特征融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部