提出了一种采用局部多项式近似—置信区间交叉(Local Polynomial Approximation and Intersection of Confidence Intervals,LPA-ICI)技术的自适应选取搜索窗的非局部均值图像去噪算法.首先采用LPA-ICI寻找当前像素所在的同质区域,然后...提出了一种采用局部多项式近似—置信区间交叉(Local Polynomial Approximation and Intersection of Confidence Intervals,LPA-ICI)技术的自适应选取搜索窗的非局部均值图像去噪算法.首先采用LPA-ICI寻找当前像素所在的同质区域,然后将该同质区域设定为当前像素的自适应搜索窗.自适应搜索窗内的像素与当前像素在灰度值以及几何结构上均呈现出"同质"性,对当前像素的估计值更接近真实值.定性与定量实验结果表明:相比于形状和大小固定的搜索窗,自适应选取搜索窗的非局部均值去噪算法能取得更好的去噪效果,对图像中边缘和纹理细节信息具有更好的保护能力.展开更多
文摘提出了一种采用局部多项式近似—置信区间交叉(Local Polynomial Approximation and Intersection of Confidence Intervals,LPA-ICI)技术的自适应选取搜索窗的非局部均值图像去噪算法.首先采用LPA-ICI寻找当前像素所在的同质区域,然后将该同质区域设定为当前像素的自适应搜索窗.自适应搜索窗内的像素与当前像素在灰度值以及几何结构上均呈现出"同质"性,对当前像素的估计值更接近真实值.定性与定量实验结果表明:相比于形状和大小固定的搜索窗,自适应选取搜索窗的非局部均值去噪算法能取得更好的去噪效果,对图像中边缘和纹理细节信息具有更好的保护能力.