期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
关于二次三角元导数的外推
1
作者 何文明 朱起定 《湖南师范大学自然科学学报》 CAS 2000年第3期21-25,共5页
对于二次三角元 ,发现uI uh 在某些特殊点导数具有更高的超收敛性 。
关键词 二次三角元 局部对称点 外推 导数 超收敛性
下载PDF
关于矩形元的超收敛性
2
作者 何文明 崔俊芝 张燕 《湘潭大学自然科学学报》 CAS CSCD 2000年第4期16-18,共3页
发现 ,对于偶次矩形元 ,uI uh 在局部对称点具有更高的超收敛性 ,对于奇次矩形元 ,| (uI uh) |在局部对称点具有更高的超收敛性 .
关键词 偶次矩形元 局部对称点
下载PDF
一种改进的超收敛与外推的方法 被引量:3
3
作者 何文明 崔俊芝 朱起定 《计算数学》 CSCD 北大核心 2002年第3期327-334,共8页
In this paper, an improved method of studying superconvergence and extrapola-tion is presented, whose key point is to obtain superconvergence and extrapolationof u - uh at locally symmetric points by investigating sup... In this paper, an improved method of studying superconvergence and extrapola-tion is presented, whose key point is to obtain superconvergence and extrapolationof u - uh at locally symmetric points by investigating superconvergence and ex-trapolation of uI - uh at locally symmetric points. Using this method, for 2-ordertriangular element, following estimation is discovered:where u*=4uh-u2h/3 0<e<1, X is a local symmetric point of Ω, and for p-orderrectiangular element, there exists:|(u - uh)(X)| ≤ chp+3| ln |ln |ln h|||||u||p+4,owhere X is a vertex of local symmetry and p = 2k(k ∈ N, k ≥ 2). 展开更多
关键词 外推 超收敛性 局部对称点 有限元 精度
原文传递
Entire solution in an ignition nonlocal dispersal equation:Asymmetric kernel 被引量:3
4
作者 ZHANG Li LI WanTong WANG ZhiCheng 《Science China Mathematics》 SCIE CSCD 2017年第10期1791-1804,共14页
This paper mainly focuses on the front-like entire solution of a classical nonlocal dispersal equation with ignition nonlinearity. Especially, the dispersal kernel function J may not be symmetric here. The asymmetry o... This paper mainly focuses on the front-like entire solution of a classical nonlocal dispersal equation with ignition nonlinearity. Especially, the dispersal kernel function J may not be symmetric here. The asymmetry of J has a great influence on the profile of the traveling waves and the sign of the wave speeds, which further makes the properties of the entire solution more diverse. We first investigate the asymptotic behavior of the traveling wave solutions since it plays an essential role in obtaining the front-like entire solution. Due to the impact of f′(0) = 0, we can no longer use the common method which mainly depends on Ikehara theorem and bilateral Laplace transform to study the asymptotic rates of the nondecreasing traveling wave and the nonincreasing one tending to 0, respectively, so we adopt another method to investigate them. Afterwards, we establish a new entire solution and obtain its qualitative properties by constructing proper supersolution and subsolution and by classifying the sign and size of the wave speeds. 展开更多
关键词 entire solution asymptotic behavior traveling wave solutions nonlocal dispersal ASYMMETRIC IGNITION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部