To obviate the complexities of the straight forward couple stress finite element method,the penalty-based couple stress finite element method(named PcouFEM)within the framework of the Cosserat continuum is utilized to...To obviate the complexities of the straight forward couple stress finite element method,the penalty-based couple stress finite element method(named PcouFEM)within the framework of the Cosserat continuum is utilized to obtain the approximate solution by relaxing the C1 continuity.To examine the performance of the PcouFEM,three well known numerical examples are investigated.For the analysis on stress concentration around the circular hole of the plane strain specimen,it was found that as long as the penalty factor G_(c) is not less than 5 times the shear modulus of the classical continuum G(i.e.,G_(c)≥5G),the stress concentration factors calculated by the PcouFEM with the reduced integration scheme agree well with the analytical solutions.For the strain localization analysis in the uniaxial compression test,it was observed that by applying the PcouFEM,the pathologically mesh-dependent problem associated with the conventional FEM can be alleviated or even removed,and based on numerical simulations,it is recommended to define 5G≤G_(c)≤10G from the perspective of numerical accuracy.For the soil slope subjected to an eccentric load through the rigid strip footing,it was found that the mesh-dependent problem of the shear band simulation can be largely alleviated by applying the PcouFEM.展开更多
This research provides experimental evidence for localized shear, billet cracking, and segmentation during the processing of various copper alloys. The results demonstrate that although many parameters affect the shea...This research provides experimental evidence for localized shear, billet cracking, and segmentation during the processing of various copper alloys. The results demonstrate that although many parameters affect the shear localization, there is a direct relation between segmentation and alloy strength (hardness) that is related to the alloying elements and constitutive phases. For instance, alpha brass is successfully processed by ECAP at room temperature, but alpha/beta brasses fail even at a temperature of 350 °C. Finite element simulation of cracking and segmentation was performed using DEFORMTM to investigate the influence of different parameters on segmentation. The results confirm that friction and processing speed have narrow effects on attaining a perfect billet. However, employing back pressure could be reliably used to diminish shear localization, billet cracking, segmentation, and damage. Moreover, diminishing the flow localization using back pressure leads to uniform material flow and the billet homogeneity increases by 36.1%, when back pressure increases from 0 to 600 MPa.展开更多
基金Project(2021YFF0306302)supported by the National Key R&D Program of ChinaProjects(42002277,41972279,42172299)supported by the National Natural Science Foundation of China+2 种基金Projects(2020M680321,2021T140046)supported by the China Postdoctoral Science FoundationProjects(2020-zz-081,2021-zz-116)supported by the Beijing Postdoctoral Research Foundation,ChinaProject(X21074)supported by the Fundamental Research Funds for Beijing University of Civil Engineering and Architecture,China。
文摘To obviate the complexities of the straight forward couple stress finite element method,the penalty-based couple stress finite element method(named PcouFEM)within the framework of the Cosserat continuum is utilized to obtain the approximate solution by relaxing the C1 continuity.To examine the performance of the PcouFEM,three well known numerical examples are investigated.For the analysis on stress concentration around the circular hole of the plane strain specimen,it was found that as long as the penalty factor G_(c) is not less than 5 times the shear modulus of the classical continuum G(i.e.,G_(c)≥5G),the stress concentration factors calculated by the PcouFEM with the reduced integration scheme agree well with the analytical solutions.For the strain localization analysis in the uniaxial compression test,it was observed that by applying the PcouFEM,the pathologically mesh-dependent problem associated with the conventional FEM can be alleviated or even removed,and based on numerical simulations,it is recommended to define 5G≤G_(c)≤10G from the perspective of numerical accuracy.For the soil slope subjected to an eccentric load through the rigid strip footing,it was found that the mesh-dependent problem of the shear band simulation can be largely alleviated by applying the PcouFEM.
基金financial support and providing research facilities used in this work
文摘This research provides experimental evidence for localized shear, billet cracking, and segmentation during the processing of various copper alloys. The results demonstrate that although many parameters affect the shear localization, there is a direct relation between segmentation and alloy strength (hardness) that is related to the alloying elements and constitutive phases. For instance, alpha brass is successfully processed by ECAP at room temperature, but alpha/beta brasses fail even at a temperature of 350 °C. Finite element simulation of cracking and segmentation was performed using DEFORMTM to investigate the influence of different parameters on segmentation. The results confirm that friction and processing speed have narrow effects on attaining a perfect billet. However, employing back pressure could be reliably used to diminish shear localization, billet cracking, segmentation, and damage. Moreover, diminishing the flow localization using back pressure leads to uniform material flow and the billet homogeneity increases by 36.1%, when back pressure increases from 0 to 600 MPa.