A rotating axisymmetric circular nanoplate is modeled by the Mindlin plate theory.The Mindlin plate theory incorporates the nonlocal scale and strain gradient effects.The shear deformation of the circular nanoplate is...A rotating axisymmetric circular nanoplate is modeled by the Mindlin plate theory.The Mindlin plate theory incorporates the nonlocal scale and strain gradient effects.The shear deformation of the circular nanoplate is considered and the nonlocal strain gradient theory is utilized to derive the governing differential equation of motion that describes the out-of-plane free vibration behaviors of the nanoplate.The differential quadrature method is used to solve the governing equation numerically,and the natural frequencies of the out-of-plane vibration of rotating nanoplates are obtained accordingly.Two kinds of boundary conditions are commonly used in practical engineering,namely the fixed and simply supported constraints,and are considered in numerical examples.The variations of natural frequencies with respect to the thickness to radius ratio,the angular velocity,the nonlocal characteristic scale and the material characteristic scale are analyzed in detail.In particular,the critical angular velocity that measures whether the rotating circular nanoplate is stable or not is obtained numerically.The presented study has reference significance for the dynamic design and control of rotating circular nanostructures in current nano-technologies and nano-devices.展开更多
Based on the nonlocal strain gradient theory(NSGT),the static bending behaviors of an axially functionally graded(AFG)Bernoulli-Euler microbeam subjected to concentrated and distributed loads are studied.The material ...Based on the nonlocal strain gradient theory(NSGT),the static bending behaviors of an axially functionally graded(AFG)Bernoulli-Euler microbeam subjected to concentrated and distributed loads are studied.The material property of the AFG microbeam changes continuously along the longitudinal direction.On the basis of the minimum potential energy principle,the equations of motion and associated classical and non-classical boundary conditions are derived.Then,Galerkin’s weighted residual method in conjunction with the normalization technique are utilized to solve the governing differential equations.The transverse deformations of the AFG microbeam suffering the sinusoidal distributed load within the framework of NSGT,nonlocal elasticity theory(NET),strain gradient theory(SGT)and classical elasticity theory(CET)are compared.It is observed that the bending flexibility of the microbeam decreases with the increase in the ratio of the material length scale parameter to the beam height.However,the bending flexibility increases with the increase in the material nonlocal parameter.The functionally graded parameter plays an important role in controlling the transverse deformation.This study provides a theoretical basis and a technical reference for the design and analysis of AFG micro-beams in the related regions.展开更多
基金supported by the Natural Science Foundation of China(No.11972240)the China Postdoctoral Science Foundation(No.2020M671574)the University Natural Science Research Project of Anhui Province(No.KJ2018A0481).
文摘A rotating axisymmetric circular nanoplate is modeled by the Mindlin plate theory.The Mindlin plate theory incorporates the nonlocal scale and strain gradient effects.The shear deformation of the circular nanoplate is considered and the nonlocal strain gradient theory is utilized to derive the governing differential equation of motion that describes the out-of-plane free vibration behaviors of the nanoplate.The differential quadrature method is used to solve the governing equation numerically,and the natural frequencies of the out-of-plane vibration of rotating nanoplates are obtained accordingly.Two kinds of boundary conditions are commonly used in practical engineering,namely the fixed and simply supported constraints,and are considered in numerical examples.The variations of natural frequencies with respect to the thickness to radius ratio,the angular velocity,the nonlocal characteristic scale and the material characteristic scale are analyzed in detail.In particular,the critical angular velocity that measures whether the rotating circular nanoplate is stable or not is obtained numerically.The presented study has reference significance for the dynamic design and control of rotating circular nanostructures in current nano-technologies and nano-devices.
基金The National Key Research and Development Program of China(No.2017YFC0307604)the Talent Foundation of China University of Petroleum(No.Y1215042)
文摘Based on the nonlocal strain gradient theory(NSGT),the static bending behaviors of an axially functionally graded(AFG)Bernoulli-Euler microbeam subjected to concentrated and distributed loads are studied.The material property of the AFG microbeam changes continuously along the longitudinal direction.On the basis of the minimum potential energy principle,the equations of motion and associated classical and non-classical boundary conditions are derived.Then,Galerkin’s weighted residual method in conjunction with the normalization technique are utilized to solve the governing differential equations.The transverse deformations of the AFG microbeam suffering the sinusoidal distributed load within the framework of NSGT,nonlocal elasticity theory(NET),strain gradient theory(SGT)and classical elasticity theory(CET)are compared.It is observed that the bending flexibility of the microbeam decreases with the increase in the ratio of the material length scale parameter to the beam height.However,the bending flexibility increases with the increase in the material nonlocal parameter.The functionally graded parameter plays an important role in controlling the transverse deformation.This study provides a theoretical basis and a technical reference for the design and analysis of AFG micro-beams in the related regions.