为了更快且更准确地对图像进行识别,提出了基于局部感受野的宽度学习算法(Local Receptive Field based Broad Learning System,BLS-LRF),该方法以宽度学习网(Broad Learning System,BLS)为基础模型,与局部感受野(LRF)的思想相结合,从...为了更快且更准确地对图像进行识别,提出了基于局部感受野的宽度学习算法(Local Receptive Field based Broad Learning System,BLS-LRF),该方法以宽度学习网(Broad Learning System,BLS)为基础模型,与局部感受野(LRF)的思想相结合,从局部特征和全局特征两方面对图像进行特征提取。采用两种图像数据集对网络进行研究,将研究结果和许多传统神经网络进行对比,结果表明BLS-LRF网络的测试精度不仅超过了传统网络的测试精度,而且训练过程所需要的时间有了很大程度的缩短。展开更多
局部线性嵌入算法LLE(Locally Linear Embedding)是一种有效的非线性降维方法,但是该算法没有考虑样本的类别标签,并且欧式距离无法精确表示非线性数据的流形结构。针对以上LLE方法的缺陷,提出一种结合测地距离与样本类别信息的监督型LL...局部线性嵌入算法LLE(Locally Linear Embedding)是一种有效的非线性降维方法,但是该算法没有考虑样本的类别标签,并且欧式距离无法精确表示非线性数据的流形结构。针对以上LLE方法的缺陷,提出一种结合测地距离与样本类别信息的监督型LLE算法(ISO-SPLLE)。首先在LLE算法的近邻选择中使用测地距离作为相似性度量,然后利用极限学习机求出其映射函数后进行分类测试。将ISO-SPLLE算法与其他改进的LLE算法在UIC标准数据集与基因数据集上进行对比实验,结果表明,该方法对已知类别的数据能更有效地进行降维与识别。展开更多
文摘为了更快且更准确地对图像进行识别,提出了基于局部感受野的宽度学习算法(Local Receptive Field based Broad Learning System,BLS-LRF),该方法以宽度学习网(Broad Learning System,BLS)为基础模型,与局部感受野(LRF)的思想相结合,从局部特征和全局特征两方面对图像进行特征提取。采用两种图像数据集对网络进行研究,将研究结果和许多传统神经网络进行对比,结果表明BLS-LRF网络的测试精度不仅超过了传统网络的测试精度,而且训练过程所需要的时间有了很大程度的缩短。
文摘局部线性嵌入算法LLE(Locally Linear Embedding)是一种有效的非线性降维方法,但是该算法没有考虑样本的类别标签,并且欧式距离无法精确表示非线性数据的流形结构。针对以上LLE方法的缺陷,提出一种结合测地距离与样本类别信息的监督型LLE算法(ISO-SPLLE)。首先在LLE算法的近邻选择中使用测地距离作为相似性度量,然后利用极限学习机求出其映射函数后进行分类测试。将ISO-SPLLE算法与其他改进的LLE算法在UIC标准数据集与基因数据集上进行对比实验,结果表明,该方法对已知类别的数据能更有效地进行降维与识别。