期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
计算矩阵M-P广义逆的一种迭代法
1
作者 陈荣 《应用数学进展》 2023年第7期3200-3210,共11页
本文提出了一种求解Moore-Penrose广义逆的高阶迭代法,并证明了该方法具有局部九阶收敛速度。此外,我们进行了数值实验,与已有的迭代法进行计算时间对比,结果表明该方法是有效可行的。
关键词 MOORE-PENROSE广义逆 迭代法 局部收敛速度
下载PDF
求解非光滑方程组的三次正则化方法
2
作者 苗小楠 顾剑 肖现涛 《运筹学学报》 北大核心 2019年第2期17-30,共14页
考虑求解非光滑方程组的三次正则化方法及其收敛性分析.利用信赖域方法的技巧,保证该方法是全局收敛的.在子问题非精确求解和BD正则性条件成立的前提下,分析了非光滑三次正则化方法的局部收敛速度.最后,数值实验结果验证了该算法的有效性.
关键词 三次正则化方法 非光滑方程组 局部收敛速度
下载PDF
Hybrid genetic algorithm for the optimization of mine ventilation network 被引量:1
3
作者 ZHAO Dan LIU Jian +1 位作者 PAN Jing-tao MA Heng 《Journal of Coal Science & Engineering(China)》 2009年第4期389-393,共5页
Used genetic algorithm (GA) to optimize the network of ventilation in order toavoid artificial convergence and speed up the convergence rate to introduce the Powellalgorithm. The Powell algorithm had been integrated i... Used genetic algorithm (GA) to optimize the network of ventilation in order toavoid artificial convergence and speed up the convergence rate to introduce the Powellalgorithm. The Powell algorithm had been integrated into GA. Powell had the effectivecapacity of solving the local optimal solution. Powell and the cross as a method ofchoice, a variation of the parallel operator, can be a better solution to the prematureconvergence of the GA problem. The two methods will be improved to make it an effective combination of hybrid GA called hybrid genetic algorithm (HGA) for the introductionof mine ventilation network optimization and to be used to solve the problem of regulating mine optimization. 展开更多
关键词 HYBRID genetic algorithm(GA) Powell algorithm ventilation net-work optimization
下载PDF
Modified Levenberg-Marquardt algorithm for source localization using AOAs in the presence of sensor location errors
4
作者 吴鑫辉 Huang Gaoming Gao Jun 《High Technology Letters》 EI CAS 2014年第3期274-281,共8页
In this paper,by utilizing the angle of arrivals(AOAs) and imprecise positions of the sensors,a novel modified Levenberg-Marquardt algorithm to solve the source localization problem is proposed.Conventional source loc... In this paper,by utilizing the angle of arrivals(AOAs) and imprecise positions of the sensors,a novel modified Levenberg-Marquardt algorithm to solve the source localization problem is proposed.Conventional source localization algorithms,like Gauss-Newton algorithm and Conjugate gradient algorithm are subjected to the problems of local minima and good initial guess.This paper presents a new optimization technique to find the descent directions to avoid divergence,and a trust region method is introduced to accelerate the convergence rate.Compared with conventional methods,the new algorithm offers increased stability and is more robust,allowing for stronger non-linearity and wider convergence field to be identified.Simulation results demonstrate that the proposed algorithm improves the typical methods in both speed and robustness,and is able to avoid local minima. 展开更多
关键词 source localization angle of arrivals (AOAs) nonlinear least-squares estimators Levenberg-Marquardt algorithm
下载PDF
Effective prediction of DEA model by neural network
5
作者 孙佰清 董靖巍 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第5期683-686,共4页
In this paper,a fast neural network model for the forecasting of effective points by DEA model is proposed,which is based on the SPDS training algorithm.The SPDS training algorithm overcomes the drawbacks of slow conv... In this paper,a fast neural network model for the forecasting of effective points by DEA model is proposed,which is based on the SPDS training algorithm.The SPDS training algorithm overcomes the drawbacks of slow convergent speed and partially minimum result for BP algorithm.Its training speed is much faster and its forecasting precision is much better than those of BP algorithm.By numeric examples,it is showed that adopting the neural network model in the forecasting of effective points by DEA model is valid. 展开更多
关键词 multi-layer neural network single parameter dynamic searching algorithm BP algorithm DEA forecasting
下载PDF
求处处不可微函数零点的局部分数阶牛顿法(英文) 被引量:1
6
作者 田艳 黄丽 +1 位作者 何桂添 罗懋康 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第2期248-254,共7页
为研究函数在不可微处的局部行为,各种局部分数阶微分定义被提出,α-微分是其中重要的一种.本文研究了α-微分的一些性质,证明了利用α-微分研究函数局部行为的合理性和α-微分的几何意义的合理性.当f(x)连续α-可微时(0<α<1),... 为研究函数在不可微处的局部行为,各种局部分数阶微分定义被提出,α-微分是其中重要的一种.本文研究了α-微分的一些性质,证明了利用α-微分研究函数局部行为的合理性和α-微分的几何意义的合理性.当f(x)连续α-可微时(0<α<1),对于求解f(x)=0,作者提出了局部分数阶牛顿法且当f(α)(x)满足指数为α(1/2<α<1)的Hlder条件时,该算法是局部Q-超线性收敛的. 展开更多
关键词 非线性规划 局部分数阶微分 局部分数阶牛顿法 局部收敛速度
原文传递
Modified constriction particle swarm optimization algorithm 被引量:4
7
作者 Zhe Zhang Limin Jia Yong Qin 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第5期1107-1113,共7页
To deal with the demerits of constriction particle swarm optimization(CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formu... To deal with the demerits of constriction particle swarm optimization(CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formula of CPSO. The random velocity operator from local optima to global optima is added into the velocity update formula of CPSO to accelerate the convergence speed of the particles to the global optima and reduce the likelihood of being trapped into local optima. Finally the convergence of the algorithm is verified by calculation examples. 展开更多
关键词 particle swarm optimization random speed operator CONVERGENCE global optima
原文传递
Linear response eigenvalue problem solved by extended locally optimal preconditioned conjugate gradient methods
8
作者 BAI ZhaoJun LI RenCang LIN WenWei 《Science China Mathematics》 SCIE CSCD 2016年第8期1443-1460,共18页
The locally optimal block preconditioned 4-d conjugate gradient method(LOBP4dC G) for the linear response eigenvalue problem was proposed by Bai and Li(2013) and later was extended to the generalized linear response e... The locally optimal block preconditioned 4-d conjugate gradient method(LOBP4dC G) for the linear response eigenvalue problem was proposed by Bai and Li(2013) and later was extended to the generalized linear response eigenvalue problem by Bai and Li(2014). We put forward two improvements to the method: A shifting deflation technique and an idea of extending the search subspace. The deflation technique is able to deflate away converged eigenpairs from future computation, and the idea of extending the search subspace increases convergence rate per iterative step. The resulting algorithm is called the extended LOBP4 dC G(ELOBP4dC G).Numerical results of the ELOBP4 dC G strongly demonstrate the capability of deflation technique and effectiveness the search space extension for solving linear response eigenvalue problems arising from linear response analysis of two molecule systems. 展开更多
关键词 eigenvalue problem linear response DEFLATION conjugate-gradient DEFLATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部