图半监督学习(Graph based semi-supervised learning,GSL)方法需要花费大量时间构造一个近邻图,速度比较慢.本文提出了一种哈希图半监督学习(Hash graph based semi-supervised learning,HGSL)方法,该方法通过局部敏感的哈希函数进行...图半监督学习(Graph based semi-supervised learning,GSL)方法需要花费大量时间构造一个近邻图,速度比较慢.本文提出了一种哈希图半监督学习(Hash graph based semi-supervised learning,HGSL)方法,该方法通过局部敏感的哈希函数进行近邻搜索,可以有效降低图半监督学习方法所需的构图时间.图像分割实验表明,该方法一方面可以达到更好的分割效果,使分割准确率提高0.47%左右;另一方面可以大幅度减小分割时间,以一幅大小为300像素×800像素的图像为例,分割时间可减少为图半监督学习所需时间的28.5%左右.展开更多
文摘图半监督学习(Graph based semi-supervised learning,GSL)方法需要花费大量时间构造一个近邻图,速度比较慢.本文提出了一种哈希图半监督学习(Hash graph based semi-supervised learning,HGSL)方法,该方法通过局部敏感的哈希函数进行近邻搜索,可以有效降低图半监督学习方法所需的构图时间.图像分割实验表明,该方法一方面可以达到更好的分割效果,使分割准确率提高0.47%左右;另一方面可以大幅度减小分割时间,以一幅大小为300像素×800像素的图像为例,分割时间可减少为图半监督学习所需时间的28.5%左右.