期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于矩阵表示的局部敏感辨别分析 被引量:1
1
作者 刘小明 邓水光 +3 位作者 尹建伟 陈黎 冯志林 董金祥 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第2期290-296,共7页
局部敏感辨别分析(LSDA)只能处理向量型数据,当处理图像等数据时容易产生奇异性问题,为此提出了一种二维局部敏感辨别分析(2DLSDA)方法,可以直接处理二维图像矩阵,能够避免奇异性问题.通过使用矩阵表示,2DLSDA可以有效地利用图像像素间... 局部敏感辨别分析(LSDA)只能处理向量型数据,当处理图像等数据时容易产生奇异性问题,为此提出了一种二维局部敏感辨别分析(2DLSDA)方法,可以直接处理二维图像矩阵,能够避免奇异性问题.通过使用矩阵表示,2DLSDA可以有效地利用图像像素间中的空间信息.依据近邻的不同,构造2个分别表示类内近邻关系和类间近邻关系的图,计算2个图上的权重矩阵,基于Schur分解求出2个正交变换矩阵.依据图像的2种展开方式,提出了2种单边2DLSDA算法.在ORL和Yale人脸数据集上的实验结果表明,基于Schur分解的2DLSDA与主成分分析(PCA)、线性辨别分析(LDA)、LSDA相比,能够高效地得到正交变换矩阵,并取得更好的分类效果. 展开更多
关键词 局部敏感辨别分析 流形学习 SCHUR分解
下载PDF
一种核正交局部敏感辨别分析算法
2
作者 王庆军 张汝波 +1 位作者 楼宋江 吕海燕 《小型微型计算机系统》 CSCD 北大核心 2009年第11期2268-2271,共4页
为了发掘嵌入在人脸样本的非线性结构信息,把核方法和基向量正交化思想引入局部敏感分析算法中,提出一种新的人脸识别算法-核正交局部敏感辨别分析(Kernel based Orthogonal Locality Sensitive Discriminant Analysis).并给出了算法的... 为了发掘嵌入在人脸样本的非线性结构信息,把核方法和基向量正交化思想引入局部敏感分析算法中,提出一种新的人脸识别算法-核正交局部敏感辨别分析(Kernel based Orthogonal Locality Sensitive Discriminant Analysis).并给出了算法的推导过程及计算步骤.首先用核方法提取人脸样本的非线性信息,并将其投影至高维非线性空间,然后采用局部敏感辨别分析做线性映射,最后采用施密特正交化方法得到正交的基向量,从而使算法更好地描述人脸非线性流形结构特征.在ORL和YaleB人脸库的人脸识别实验证明了所提算法的有效性. 展开更多
关键词 人脸识别 核方法 正交化 局部敏感辨别分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部