期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
局部均值伪最近邻算法在降水预报中的应用 被引量:2
1
作者 林润生 黄明明 《沙漠与绿洲气象》 2017年第5期1-8,共8页
分析北京地区日降雨量资料发现,相较于其他降雨事件,大雨或暴雨事件发生的次数较少,因此该地区的降水量预报属于样本不均衡问题。在样本不均衡的情况下,K最近邻算法的分类误差率将会大大提高,这也就使传统的基于K最近邻算法的降水量预... 分析北京地区日降雨量资料发现,相较于其他降雨事件,大雨或暴雨事件发生的次数较少,因此该地区的降水量预报属于样本不均衡问题。在样本不均衡的情况下,K最近邻算法的分类误差率将会大大提高,这也就使传统的基于K最近邻算法的降水量预报方法的应用受到了限制。针对北京地区降水量预报这一样本不均衡问题,应用局部均值伪最近邻算法构建了北京市的降水量预报模型。该方法利用北京地区日降雨量资料和美国国家环境预报中心全球格点资料,将降雨量作为类,将美国国家环境预报中心全球格点资料的各种因子场作为天气样本特征,计算得到不同天气样本在所有类中的局部均值伪最近邻,通过决策规则实现最优分类。利用提出的降水预报模型对北京市2010年6—8月进行了24 h降水预报,实验结果表明,提出的预报方法对于降水等级预报的预报准确率以及晴雨预报的TS评分、正样本概括率、空报率和漏报率均优于传统的K最近邻预报方法,该方法具有较好的预报效果。 展开更多
关键词 局部均值伪最近算法 K最近算法 降水量
下载PDF
罚处共享最近邻密度峰聚类算法 被引量:1
2
作者 高润峰 苏一丹 覃华 《计算机工程与设计》 北大核心 2021年第12期3407-3414,共8页
为解决传统密度峰聚类算法容易忽略低密度簇中心以及难以自动选择聚类中心的问题,提出罚处共享最近邻密度峰聚类算法。设计罚处系数,减少高密度簇中非中心点的共享最近邻局部密度值,降低低密度簇中心点被忽视的机率;采用迭代阈值法实现... 为解决传统密度峰聚类算法容易忽略低密度簇中心以及难以自动选择聚类中心的问题,提出罚处共享最近邻密度峰聚类算法。设计罚处系数,减少高密度簇中非中心点的共享最近邻局部密度值,降低低密度簇中心点被忽视的机率;采用迭代阈值法实现簇中心点的自动选择。在人工数据集、UCI真实数据集以及图像数据集上进行仿真实验,其结果表明,该算法能找到数据集的簇中心和簇数目,聚类精度优于相比较的其它算法,该算法是可行的、有效的。 展开更多
关键词 密度峰聚类算法 共享最近局部密度 簇中心点 罚处系数 迭代阈值法
下载PDF
改进核最近特征分类器与雷达目标识别 被引量:1
3
作者 刘华林 阳光 《计算机工程》 CAS CSCD 北大核心 2009年第21期7-9,共3页
为了解决核最近特征线与特征平面分类器在计算大数据样本量与高维数时工作量较大的问题,根据局部最近邻准则,提出针对这2种分类器的改进策略,使其不仅能够降低失效的可能性,而且在保证相近识别率的条件下,提高算法的实时性能,利用3类不... 为了解决核最近特征线与特征平面分类器在计算大数据样本量与高维数时工作量较大的问题,根据局部最近邻准则,提出针对这2种分类器的改进策略,使其不仅能够降低失效的可能性,而且在保证相近识别率的条件下,提高算法的实时性能,利用3类不同飞机实测距离像回波数据对其进行测试,实验结果表明,该改进策略是有效可行的。 展开更多
关键词 雷达目标识别 最近特征分类器 局部最近邻准则 距离像
下载PDF
一种K值自适应和局部搜索的KNN矩阵修复方法
4
作者 王社会 杨俊安 《电子信息对抗技术》 2014年第6期60-63,共4页
数据在采集和传输过程中由于多种原因会造成矩阵残缺,因此在数据分析之前需要对残缺矩阵进行修复。常见的KNN修复方法 k值选取不合理,且需在整个矩阵中搜索近邻,影响算法的修复效果。在其基础上提出了一种k值自适应的局部KNN矩阵修复方... 数据在采集和传输过程中由于多种原因会造成矩阵残缺,因此在数据分析之前需要对残缺矩阵进行修复。常见的KNN修复方法 k值选取不合理,且需在整个矩阵中搜索近邻,影响算法的修复效果。在其基础上提出了一种k值自适应的局部KNN矩阵修复方法,合理考虑了k值的选取和近邻项的搜索范围。实验证明了该方法能有效提高矩阵修复的正确率,且算法的时效性有所提高。 展开更多
关键词 数据缺失 矩阵修复 KNN理论 自适应K 局部最近邻
下载PDF
基于特别的特征表示方法的局部线性KNN算法 被引量:2
5
作者 卞则康 王士同 王宇翔 《计算机科学与探索》 CSCD 北大核心 2018年第1期134-142,共9页
提出了一种特别的特征表示方法,并在此基础上提出了一种基于特别的特征表示方法的局部线性K最近邻算法(locally linear K-nearest neighbor method,L^2KNN),并将之应用到人脸识别中。特别的特征表示方法是在传统的稀疏表示的基础上,加... 提出了一种特别的特征表示方法,并在此基础上提出了一种基于特别的特征表示方法的局部线性K最近邻算法(locally linear K-nearest neighbor method,L^2KNN),并将之应用到人脸识别中。特别的特征表示方法是在传统的稀疏表示的基础上,加入了非负约束,改进了传统的稀疏表示的方法,在目标函数中增加了集群正则化项,然后优化新的目标函数得到一个新的近似的特征表示。L^2KNN算法具有最近邻集群效应(clustering effect of nearest neighbors,CENN),不仅可以增强测试样本与同类的训练样本之间的相关性,而且可以增强同类训练样本之间的相关性。L^2KNN算法进一步应用到L^2KNNc(L^2KNN-based classifier)分类器中,并提出一种系数截断的方法增加L^2KNNc分类器的泛化性能,进一步提高分类器的分类性能。在人脸数据集上的实验结果证明了上述结论。 展开更多
关键词 特别的特征表示 局部线性K最近算法(L^2KNN) 最近集群效应(CENN) 系数截断方法
下载PDF
基于加权局部线性KNN的文本分类算法 被引量:6
6
作者 齐斌 邹红霞 王宇 《计算机应用研究》 CSCD 北大核心 2020年第8期2381-2385,2408,共6页
针对基于稀疏表示的分类算法存在分类限制和计算复杂性等问题进行了研究。首先,改进了加权局部线性KNN文本特征表示方法和分类算法,通过对表示系数加权使其更加稀疏,引入非负约束以规避表示系数出现负的噪声干扰;其次,给出了分类器设计... 针对基于稀疏表示的分类算法存在分类限制和计算复杂性等问题进行了研究。首先,改进了加权局部线性KNN文本特征表示方法和分类算法,通过对表示系数加权使其更加稀疏,引入非负约束以规避表示系数出现负的噪声干扰;其次,给出了分类器设计和算法的收敛性证明;最后,通过实验对比得出模型中各参数的优势值域。实验结果表明,改进后的算法与基础模型相比,查准率和查全率平均分别提升了2.49%和0.85%,相比于其他主流分类算法在性能上也均有明显提高。通过分析,该算法在文本分类上具有准确率高、收敛性强等优势,适用于对高维数据的文本分类。 展开更多
关键词 稀疏表示 加权 局部线性K最近 文本分类
下载PDF
基于LNN-DPC加权集成学习的转炉炼钢终点碳温软测量方法 被引量:4
7
作者 熊倩 刘辉 刘旭琛 《计算机集成制造系统》 EI CSCD 北大核心 2022年第12期3886-3898,共13页
转炉炼钢终点控制的关键是碳温准确预报。针对实际生产中因原料品质差异导致的炉次样本波动性较大所造成全局单一模型无法精确预测终点碳温的问题,提出一种局部最近邻密度峰值聚类算法(LNN-DPC)加权集成学习软测量方法。首先,采用改进... 转炉炼钢终点控制的关键是碳温准确预报。针对实际生产中因原料品质差异导致的炉次样本波动性较大所造成全局单一模型无法精确预测终点碳温的问题,提出一种局部最近邻密度峰值聚类算法(LNN-DPC)加权集成学习软测量方法。首先,采用改进的峰值密度聚类算法划分降维后的训练数据形成局部样本子集,构建子集与原始数据间的一一对应关系生成高斯过程回归子模型,并在原始数据子集下度量得到熵值加权的子集“质心”;其次,通过灰色关联分析选择与测试样本关联度较强的模型作为局部模型,提出关联度加权集成策略输出碳温预测结果。在实际转炉炼钢生产过程数据仿真结果下,碳含量在±0.02%的误差范围内精度达到85.2%,温度在±10℃的误差范围内精度达到84.8%。 展开更多
关键词 转炉炼钢 集成学习 t-分布随机域嵌入算法 局部最近邻密度峰值聚类算法 灰色关联分析 高斯过程回归
下载PDF
基于多角度LBP特征的三维人脸性别分类 被引量:7
8
作者 赵海英 杨一帆 徐正光 《自动化学报》 EI CSCD 北大核心 2012年第9期1544-1549,共6页
人脸性别分类是一个富有挑战的研究方向,目前的研究尚不完善.本文提出一种三维人脸的性别分类方法,首先对数据集进行局部区域最近邻点迭代算法(Iterative closest point,ICP)匹配,自动实现人脸正向姿态校正;对数据集人脸统一做俯仰角度... 人脸性别分类是一个富有挑战的研究方向,目前的研究尚不完善.本文提出一种三维人脸的性别分类方法,首先对数据集进行局部区域最近邻点迭代算法(Iterative closest point,ICP)匹配,自动实现人脸正向姿态校正;对数据集人脸统一做俯仰角度的旋转,从不同视角上提取基于深度缩略图的多角度LBP(Local binary patterns)特征;再由支持向量机(Support vector machine,SVM)分类器完成训练分类.该方法在CASIA数据库上实验,对全库中性表情人脸进行性别分类,可以得到最高98.374%的正确率. 展开更多
关键词 三维人脸 性别分类 局部区域最近点迭代算法(Iterative closest point ICP) 深度缩略图 多角度LBP
下载PDF
LOCAL BAGGING AND ITS APPLICATIONON FACE RECOGNITION 被引量:1
9
作者 朱玉莲 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第3期255-260,共6页
Bagging is not quite suitable for stable classifiers such as nearest neighbor classifiers due to the lack of diversity and it is difficult to be directly applied to face recognition as well due to the small sample si... Bagging is not quite suitable for stable classifiers such as nearest neighbor classifiers due to the lack of diversity and it is difficult to be directly applied to face recognition as well due to the small sample size (SSS) property of face recognition. To solve the two problems,local Bagging (L-Bagging) is proposed to simultaneously make Bagging apply to both nearest neighbor classifiers and face recognition. The major difference between L-Bagging and Bagging is that L-Bagging performs the bootstrap sampling on each local region partitioned from the original face image rather than the whole face image. Since the dimensionality of local region is usually far less than the number of samples and the component classifiers are constructed just in different local regions,L-Bagging deals with SSS problem and generates more diverse component classifiers. Experimental results on four standard face image databases (AR,Yale,ORL and Yale B) indicate that the proposed L-Bagging method is effective and robust to illumination,occlusion and slight pose variation. 展开更多
关键词 face recognition local Bagging (L-Bagging) small sample size (SSS) nearest neighbor classifiers
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部