期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
自适应阈值局部特征融合的人脸识别 被引量:5
1
作者 齐美彬 田中贺 蒋建国 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2018年第4期468-472,512,共6页
针对局部二值模式(local binary pattern,LBP)提取图像纹理特征时阈值不能自适应以及缺少方向信息的问题,文章提出了一种自适应阈值局部特征融合的人脸识别算法。首先对原始人脸图像进行分块处理,提取每个子块自适应阈值均匀模式的局部... 针对局部二值模式(local binary pattern,LBP)提取图像纹理特征时阈值不能自适应以及缺少方向信息的问题,文章提出了一种自适应阈值局部特征融合的人脸识别算法。首先对原始人脸图像进行分块处理,提取每个子块自适应阈值均匀模式的局部二值模式(uniform local binary pattern,ULBP)特征和局部梯度编码(local gradient coding,LGC)特征;然后,将2种局部特征串联在一起融合为1种特征,得到每个子块的直方图特征,把每个子块图像的信息熵作为直方图加权系数,将所有子块图像的直方图乘以各自的加权系数,连接得到整幅人脸图像的直方图特征;最后用支持向量机(support vector machine,SVM)分类器进行识别分类。在ORL、Yale、FERET(be、bj、bf子库)人脸数据库上进行试验,该人脸识别算法分别得到了99.0%、98.7%、87.5%、93.0%、88.5%的识别率,正确识别率较高,算法对其他纹理分类、目标识别也具有一定的参考价值。 展开更多
关键词 人脸识别 自适应阈值 局部二值模式(LBP) 局部梯度编码(lgc) 信息熵
下载PDF
基于非对称局部梯度编码的人脸表情识别 被引量:5
2
作者 胡敏 程轶红 +3 位作者 王晓华 任福继 许良凤 黄晓音 《中国图象图形学报》 CSCD 北大核心 2015年第10期1313-1321,共9页
目的针对局部梯度编码算子(LGC)只能在固定大小邻域内提取图像纹理特征的不足,提出了一种非对称邻域LGC算子(AR-LGC)多尺度融合的表情特征提取方法。方法首先,对归一化的表情图像进行Gauss滤波处理;然后,对图像进行分块,对每个子块图像... 目的针对局部梯度编码算子(LGC)只能在固定大小邻域内提取图像纹理特征的不足,提出了一种非对称邻域LGC算子(AR-LGC)多尺度融合的表情特征提取方法。方法首先,对归一化的表情图像进行Gauss滤波处理;然后,对图像进行分块,对每个子块图像中每一像素点,采用不同邻域大小的AR-LGC算子得到两个二进制序列,将两个序列作按位逻辑异或得到一个新的序列,对此序列进行编码,计算每个子块的直方图分布,级联各子块直方图构成人脸表情的特征;最后用SVM分类器进行表情分类识别。结果该算法在JAFFE库和CK库上进行实验,分别取得了95.24%和96.83%的平均识别率,并与CBP(中心化二值模式)、LBP(局部二值模式)、LGC和AR-LBP(非对称局部二值模式)算法进行了比较,在JAFFE库的平均识别率分别比CBP、LBP、LGC、AR-LBP高5.6%、4.85%、3.71%、2.40%,在CK库的平均识别率分别比CBP、LBP、LGC、AR-LBP高3.66%、2.50%、2.17%、1.66%,实验结果表明,该算法可以较准确地进行人脸表情识别。结论本文所提的表情特征提取方法通过融合不同梯度不同尺度子邻域间的强度关系,可以很好地表达图像的局部特征和全局特征,与典型的特征提取算法的对比实验也表明了本文算法的有效性,表明本文算法适用于静态人脸表情图像的识别。 展开更多
关键词 表情识别 非对称局部梯度编码 特征提取 多尺度融合 支持向量机(SVM)
原文传递
融合DCLBP和HOAG特征的人脸表情识别方法 被引量:12
3
作者 吴昊 胡敏 +2 位作者 高永 王晓华 黄忠 《电子测量与仪器学报》 CSCD 北大核心 2020年第2期73-79,共7页
为了进一步提高人脸表情识别算法的准确性,提出一种融合双编码局部二值模式(DCLBP)算子和绝对梯度直方图(HOAG)算子的人脸表情识别方法,该方法首先利用DCLBP算子提取人脸图像的局部纹理特征,利用HOAG算子提取人脸图像的局部形状特征;然... 为了进一步提高人脸表情识别算法的准确性,提出一种融合双编码局部二值模式(DCLBP)算子和绝对梯度直方图(HOAG)算子的人脸表情识别方法,该方法首先利用DCLBP算子提取人脸图像的局部纹理特征,利用HOAG算子提取人脸图像的局部形状特征;然后,采用典型相关分析法(CCA)融合所提取的两种特征;最后,利用支持向量机(SVM)进行人脸表情分类。实验结果表明,与单一特征识别方法和级联特征识别方法相比,本文方法获得了更好的识别效果,在CK (Cohn-Kanade)和JAFFE数据集上的实验分别达到了100%和99.05%的识别率,与其他相关方法的比较也验证了其有效性。 展开更多
关键词 人脸表情识别 编码局部二值模式 绝对梯度方向直方图 典型相关分析
下载PDF
用双层重建法实现单幅图像的超分辨率重建 被引量:12
4
作者 龚卫国 潘飞宇 李进明 《光学精密工程》 EI CAS CSCD 北大核心 2014年第3期720-729,共10页
针对现有基于稀疏编码的单幅图像超分辨率重建算法易导致重建图像中出现不正确几何结构的现象,提出一种字典非相关性约束和稀疏系数非局部自相似性约束结合的稀疏编码方法.为解决引入这种自相似性约束造成的重建图像边缘过度平滑、模糊... 针对现有基于稀疏编码的单幅图像超分辨率重建算法易导致重建图像中出现不正确几何结构的现象,提出一种字典非相关性约束和稀疏系数非局部自相似性约束结合的稀疏编码方法.为解决引入这种自相似性约束造成的重建图像边缘过度平滑、模糊的问题,提出了基于平滑层和纹理层的双层重建框架.该方法运用一种全局非零梯度数目约束重建模型重建平滑层;通过提出的稀疏编码方法重建高分辨率纹理图像.最后,利用一个全局和局部优化模型进一步提升重建图像的质量.实验结果表明,与一些具有代表性的重建方法相比,该方法得到的峰值信噪比(PSNR)和结构相似度(SSIM)平均值分别提高了0.798 7~3.242 4 dB和0.018 6~0.083 5,不仅主观视觉效果上取得了明显的改进,鲁棒性得到增强,而且重建出了更加准确的结构和边缘,取得了更好的重建效果. 展开更多
关键词 图像重建 双层重建 稀疏编码 非零梯度数目约束 全局-局部约束
下载PDF
WGC特征描述的人脸表情识别 被引量:5
5
作者 齐梅 李艳秋 《电子测量与仪器学报》 CSCD 北大核心 2017年第4期566-572,共7页
针对韦伯局部特征(WLD)仅计算中心像素与周围像素差异提取特征的不足,提出了一种韦伯梯度编码(WGC)特征描述的人脸表情识别算法。首先计算当前像素点周围水平、垂直和对角位置上的数值差与当前像素点的差异构成WGC特征的差动激励;然后... 针对韦伯局部特征(WLD)仅计算中心像素与周围像素差异提取特征的不足,提出了一种韦伯梯度编码(WGC)特征描述的人脸表情识别算法。首先计算当前像素点周围水平、垂直和对角位置上的数值差与当前像素点的差异构成WGC特征的差动激励;然后进一步提出基于水平和对角线优先原则的WGC_HD特征;最后利用最佳分块方式得到行分块WGC_HD特征,采用自动优化参数的SVM分类器完成人脸表情识别。在公共人脸表情库JAFFE和CK库上进行交叉实验,平均识别率及平均特征提取时间分别为95.49%、12.30 ms和97.63%、31.54 ms。行分块WGC_HD特征考虑了不同梯度方向的像素差异,较好描述了表情图像的局部结构信息且具有较低的时间复杂度,与目前典型的表情识别算法结果对比也验证了算法具有较高的识别精度。 展开更多
关键词 韦伯局部特征 韦伯梯度编码 水平和对角优先原则 人脸表情识别
下载PDF
基于LLC与加权SPM的车辆品牌型号识别 被引量:2
6
作者 李熙莹 袁敏贤 +1 位作者 吕硕 江倩殷 《计算机工程》 CAS CSCD 北大核心 2017年第5期210-216,共7页
针对传统车辆识别算法鲁棒性及实时性不强的问题,结合局部线性约束编码(LLC)和加权空间金字塔匹配(SPM)模型,提出一种车辆品牌型号精细识别算法。提取图像方向梯度直方图特征,通过LLC对图像特征进行编码映射,得到具有语义信息的图像表... 针对传统车辆识别算法鲁棒性及实时性不强的问题,结合局部线性约束编码(LLC)和加权空间金字塔匹配(SPM)模型,提出一种车辆品牌型号精细识别算法。提取图像方向梯度直方图特征,通过LLC对图像特征进行编码映射,得到具有语义信息的图像表达向量,以提高识别的准确率。利用加权SPM模型将空间位置信息引入图像表达向量中,并将每个图像的最终表达送入线性支持向量机分类器进行训练与识别。使用交通监控摄像头在不同天气和光照条件下采集150种车辆类型共56 827张图像进行实验,结果表明,该算法可有效改善识别效果,提高识别速度。 展开更多
关键词 车辆品牌型号识别 方向梯度直方图 局部约束线性编码 加权空间金字塔匹配 支持向量机
下载PDF
基于改进CoHOG-LQC的行人检测算法 被引量:1
7
作者 曲仕茹 李桃 《西北工业大学学报》 EI CAS CSCD 北大核心 2017年第2期274-279,共6页
针对行人检测过程中,易对相似目标产生误判的问题,并结合局部纹理特征描述子对图像边缘、方向信息的描述能力与检测精度的强相关性,同时考虑到基于LBP和HOG的特征融合方法存在结构利用率低、光谱信息损失多的缺点,提出了一种基于LQC和Co... 针对行人检测过程中,易对相似目标产生误判的问题,并结合局部纹理特征描述子对图像边缘、方向信息的描述能力与检测精度的强相关性,同时考虑到基于LBP和HOG的特征融合方法存在结构利用率低、光谱信息损失多的缺点,提出了一种基于LQC和CoHOG特征融合的行人检测算法。首先通过LQC算子提取图像的纹理谱特征,同时使用积分图计算CoHOG特征值,以提取原始图像的边缘特征及基于LQC特征谱的CoHOG特征。然后将上述特征与CoHOG边缘特征融合,得到融合特征描述图像,最后使用HIKSVM分类器实现输入图像的检测与识别。为验证算法的有效性,分别在MIT行人数据库、Caltech行人数据库和INRIA行人数据库上进行实验。实验结果表明,提出的方法可以有效提高行人检测精度和效率。 展开更多
关键词 行人检测 共生梯度方向直方图 局部量化编码 特征提取 特征融合
下载PDF
基于级联深度神经网络的抑郁症识别 被引量:5
8
作者 江筱 邵珠宏 +1 位作者 尚媛园 丁辉 《计算机应用与软件》 北大核心 2019年第10期117-122,150,共7页
抑郁症是最常见的心理障碍之一,严重困扰患者的工作和生活。随着情感感知技术的发展,开发抑郁症自动识别系统具有广阔的前景。基于视频人脸图像,结合级联深度神经网络和多特征(全局特征和局部特征)对抑郁症BDI-II分值进行预测。设计全... 抑郁症是最常见的心理障碍之一,严重困扰患者的工作和生活。随着情感感知技术的发展,开发抑郁症自动识别系统具有广阔的前景。基于视频人脸图像,结合级联深度神经网络和多特征(全局特征和局部特征)对抑郁症BDI-II分值进行预测。设计全局特征网络、局部特征网络(眼部,嘴部)三个分支,利用FaceNet网络和深度神经网络提取全局特征,利用基于四元数的局部二进制编码和深度神经网络提取局部特征。在融合层将全局特征向量和局部特征向量拼接,接入第三个深度神经网络对抑郁程度进行预测。在AVEC2013和AVEC2014抑郁症数据库上进行测试,实验结果表明,与其他基于视觉的方法相比,该方法取得了更小的平均绝对误差和均方根误差。 展开更多
关键词 抑郁症识别 深层神经网络 四元数 局部二值模式 异或非对称区域局部梯度编码
下载PDF
改进的HOG-CLBC的行人检测方法 被引量:8
9
作者 程德强 唐世轩 +2 位作者 冯晨晨 游大磊 张丽颖 《光电工程》 CAS CSCD 北大核心 2018年第8期72-80,共9页
传统的基于HOG与LBP的特征融合行人检测方法光谱信息损失多、对噪声较为敏感,原始的LBP算法对不均匀的光照变化鲁棒性差,对纹理特征的旋转不变性差。为了克服以上缺点,本文提出了一种基于CLBC和HOG特征融合的行人检测算法。首先,计算原... 传统的基于HOG与LBP的特征融合行人检测方法光谱信息损失多、对噪声较为敏感,原始的LBP算法对不均匀的光照变化鲁棒性差,对纹理特征的旋转不变性差。为了克服以上缺点,本文提出了一种基于CLBC和HOG特征融合的行人检测算法。首先,计算原始图像的CLBC特征,并计算基于CLBC纹理特征谱的HOG特征。接着计算原始图像的HOG特征以提取图像的边缘特征。然后将图像的三种特征融合来描述图像,并使用PCA方法降低特征维度,最后使用HIKSVM分类器实现最终对行人的检测。本文分别在Caltech行人数据库和INRIA行人数据库进行实验以验证所提出算法的有效性。实验结果表明,本文所提出的算法有效地提高了行人检测的精度。 展开更多
关键词 行人检测 方向梯度直方图 完备的局部二值编码 特征提取 特征融合
下载PDF
跨年龄人脸验证技术研究 被引量:1
10
作者 孙燕 李旭军 何启泓 《智能系统学报》 CSCD 北大核心 2021年第2期247-253,共7页
针对跨年龄人脸验证任务中面部纹理、形状特征变化的问题,提出一种基于双编码平均局部二值模式(dual-coded average local binary pattern,DCALBP)与深度学习算法相结合的多任务人脸验证算法。首先,使用多任务卷积神经网络(multi-task c... 针对跨年龄人脸验证任务中面部纹理、形状特征变化的问题,提出一种基于双编码平均局部二值模式(dual-coded average local binary pattern,DCALBP)与深度学习算法相结合的多任务人脸验证算法。首先,使用多任务卷积神经网络(multi-task convolutional neural network,MTCNN)对人脸检测图片进行预处理,引入双编码平均局部二值模式(DCALBP)和梯度直方图算法(histogram of oriented gradient,HOG)提取人脸的局部纹理特征和形状特征,运用典型相关性分析(canonical correlation analysis,CCA)算法将两种特征融合,得到人脸年龄特征。然后,孪生网络(siamese network)提取人脸面部特征,并将纹理形状特征从中分离,抑制年龄因素对人脸验证的影响,从而得到具有年龄不变性的人脸特征。最后进行人脸特征匹配,实现跨年龄人脸验证。通过在数据集FG-NET、MORPH Album2以及经过处理的综合数据集上进行实验,准确率分别为89.73%、98.32%和98.27%,充分验证了该方法的有效性。 展开更多
关键词 人脸验证 深度学习 年龄干扰 编码平均局部二值模式 方向梯度直方图 典型相关性分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部