This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of...This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of the vehicle are vertical and horizontal edges,shadow and symmetry.By comparing local features using the fixed window size,the features in the continuous images are tracked.A robust and fast Haarlike mask is used for detecting vertical and horizontal edges,and shadow is extracted by histogram equalization,and the sliding window method is used to compare both side templates of the detected candidates for extracting symmetry.The features for tracking are vertical edges,and histogram is used to compare location of the peak and magnitude of the edges.The method using local feature tracking in the continuous images is more robust for detecting vehicle than the method using single image,and the proposed algorithm is evaluated by continuous images obtained on the expressway and downtown.And it can be performed on real-time through applying it to the embedded system.展开更多
In this paper, an adaptive noise detection and removal algorithm using local statistics for salt-and-pepper noise are proposed. In order to determine constraints for noise detection, the local mean, varianoe, and maxi...In this paper, an adaptive noise detection and removal algorithm using local statistics for salt-and-pepper noise are proposed. In order to determine constraints for noise detection, the local mean, varianoe, and maximum value are used. In addition, a weighted median filter is employed to remove the detected noise. The simulation results show the capability of the proposed algorithm removes the noise effectively.展开更多
基金supported by the Brain Korea 21 Project in 2011 and MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Infor mation Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency)(NIPA-2011-C1090-1121-0010)
文摘This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of the vehicle are vertical and horizontal edges,shadow and symmetry.By comparing local features using the fixed window size,the features in the continuous images are tracked.A robust and fast Haarlike mask is used for detecting vertical and horizontal edges,and shadow is extracted by histogram equalization,and the sliding window method is used to compare both side templates of the detected candidates for extracting symmetry.The features for tracking are vertical edges,and histogram is used to compare location of the peak and magnitude of the edges.The method using local feature tracking in the continuous images is more robust for detecting vehicle than the method using single image,and the proposed algorithm is evaluated by continuous images obtained on the expressway and downtown.And it can be performed on real-time through applying it to the embedded system.
基金supported by the Korea Science and Engineering Foundation(KOSEF)granted bythe Korea government(MEST)(No.2009-0079776)
文摘In this paper, an adaptive noise detection and removal algorithm using local statistics for salt-and-pepper noise are proposed. In order to determine constraints for noise detection, the local mean, varianoe, and maximum value are used. In addition, a weighted median filter is employed to remove the detected noise. The simulation results show the capability of the proposed algorithm removes the noise effectively.