Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code co...Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model Open FOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional(2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.展开更多
Based on the recently developed data-driven time-frequency analysis(Hou and Shi, 2013), we propose a two-level method to look for the sparse time-frequency decomposition of multiscale data. In the two-level method, we...Based on the recently developed data-driven time-frequency analysis(Hou and Shi, 2013), we propose a two-level method to look for the sparse time-frequency decomposition of multiscale data. In the two-level method, we first run a local algorithm to get a good approximation of the instantaneous frequency. We then pass this instantaneous frequency to the global algorithm to get an accurate global intrinsic mode function(IMF)and instantaneous frequency. The two-level method alleviates the difficulty of the mode mixing to some extent.We also present a method to reduce the end effects.展开更多
基金the State Key Laboratory of Hydraulic Engineering Simulation and Safety Foundation (No. HESS-1412)the National Science Fund (No. 51179178)the 111 Project (No. B14028)
文摘Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model Open FOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional(2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.
基金supported by National Science Foundation of USA (Grants Nos. DMS1318377 and DMS-1613861)National Natural Science Foundation of China (Grant Nos. 11371220, 11671005, 11371173, 11301222 and 11526096)
文摘Based on the recently developed data-driven time-frequency analysis(Hou and Shi, 2013), we propose a two-level method to look for the sparse time-frequency decomposition of multiscale data. In the two-level method, we first run a local algorithm to get a good approximation of the instantaneous frequency. We then pass this instantaneous frequency to the global algorithm to get an accurate global intrinsic mode function(IMF)and instantaneous frequency. The two-level method alleviates the difficulty of the mode mixing to some extent.We also present a method to reduce the end effects.