期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多局部残差连接注意网络的图像去模糊 被引量:1
1
作者 陈清江 王巧莹 《应用光学》 CAS 北大核心 2023年第2期337-344,共8页
针对现有的基于卷积神经网络的图像去模糊算法存在图像纹理细节恢复不清晰的问题,提出了一种基于多局部残差连接注意网络的图像去模糊算法。首先,采用一个卷积层进行浅层特征提取;其次,设计了一种新的基于残差连接和并行注意机制的多局... 针对现有的基于卷积神经网络的图像去模糊算法存在图像纹理细节恢复不清晰的问题,提出了一种基于多局部残差连接注意网络的图像去模糊算法。首先,采用一个卷积层进行浅层特征提取;其次,设计了一种新的基于残差连接和并行注意机制的多局部残差连接注意模块,用于消除图像模糊并提取上下文信息;再次,采用一个基于扩张卷积的成对连接模块进行细节恢复;最后,利用一个卷积层重建清晰图像。实验结果表明:在GoPro数据集上的PSNR(peak signal to noise ratio)和SSIM(structure similarity)分别为31.83 dB、0.9275,在定性和定量两方面都表明所提方法能够有效地恢复模糊图像的纹理细节,网络性能优于对比方法。 展开更多
关键词 卷积神经网络 注意机制 局部残差连接 扩张卷积
下载PDF
基于注意力残差编解码网络的动态场景图像去模糊 被引量:7
2
作者 杨飞璠 李晓光 卓力 《应用光学》 CAS CSCD 北大核心 2021年第4期685-690,共6页
动态场景下的图像去模糊技术是一个具有挑战性的计算机视觉问题。模糊图像不仅影响主观感受,还会影响后续的智能化分析的性能。提出了一种基于注意力残差编解码网络的动态场景图像去模糊方法。首先,编码阶段采用多个残差模块提取特征,... 动态场景下的图像去模糊技术是一个具有挑战性的计算机视觉问题。模糊图像不仅影响主观感受,还会影响后续的智能化分析的性能。提出了一种基于注意力残差编解码网络的动态场景图像去模糊方法。首先,编码阶段采用多个残差模块提取特征,加入空间注意力模块感知模糊的空间位置信息;其次,通过在网络中采用全局-局部残差连接策略融合多层卷积特征,减少信息丢失;最后,解码阶段生成具有清晰边缘结构的复原图像。实验结果显示,提出的算法在公开数据集上获得的峰值信噪比值为31.76 dB,结构相似性值为0.912。客观和主观质量评估表明,本文算法能够有效地复原包含丰富边缘轮廓信息的清晰图像,在对比算法中获得最优的性能。 展开更多
关键词 图像去模糊 空间注意力 全局-局部残差连接 特征融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部