At present,most signal-to-noise ratio(SNR)estimation methods can only calculate the global and not the local SNR of seismic data.This paper proposes a calculation method of a structure-oriented-based seismic SNR attri...At present,most signal-to-noise ratio(SNR)estimation methods can only calculate the global and not the local SNR of seismic data.This paper proposes a calculation method of a structure-oriented-based seismic SNR attribute.The purpose is to characterize the temporal and spatial variation of the seismic data SNR.First,the local slope parameters of the seismic events are calculated using a plane wave decomposition filter.Then,the singular value decomposition method is used to calculate the local seismic data SNR,thereby obtaining it in time and space.The proposed method overcomes the insufficiency of a conventional global SNR to characterize any local seismic data features and uses the SNR as an attribute of seismic data to more accurately describe the signal-noise energy distribution characteristics of seismic data in time and space.The results of a theoretical model test and real data processing show that the SNR attribute can be used not only for seismic data quality evaluation but also for analysis and evaluation of denoising methods.展开更多
基金supported by National Natural Science Foundation of China(No.41604094)Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University),Ministry of Education(No.K2018-13)
文摘At present,most signal-to-noise ratio(SNR)estimation methods can only calculate the global and not the local SNR of seismic data.This paper proposes a calculation method of a structure-oriented-based seismic SNR attribute.The purpose is to characterize the temporal and spatial variation of the seismic data SNR.First,the local slope parameters of the seismic events are calculated using a plane wave decomposition filter.Then,the singular value decomposition method is used to calculate the local seismic data SNR,thereby obtaining it in time and space.The proposed method overcomes the insufficiency of a conventional global SNR to characterize any local seismic data features and uses the SNR as an attribute of seismic data to more accurately describe the signal-noise energy distribution characteristics of seismic data in time and space.The results of a theoretical model test and real data processing show that the SNR attribute can be used not only for seismic data quality evaluation but also for analysis and evaluation of denoising methods.