为了改善传统Relief算法适应性和鲁棒性差的缺陷,融合间距最大化、信息熵和分类局部一致性,构造了新的间距最大化目标函数,并进一步对目标函数进行优化,得到一些新的理论结果。在此基础上提出了新的基于两类数据的Relief特征加权算法LIE...为了改善传统Relief算法适应性和鲁棒性差的缺陷,融合间距最大化、信息熵和分类局部一致性,构造了新的间距最大化目标函数,并进一步对目标函数进行优化,得到一些新的理论结果。在此基础上提出了新的基于两类数据的Relief特征加权算法LIE-Relief-T(Local consistency information entropy Relief algorithm based twoclass data),并将其扩展到多类数据的特征加权算法LIE-Relief-MLocal consistency information entropy Relief algorithm based multi-class data)。利用UCI和基因表达数据集进行实验验证,结果表明该新的Relief特征加权算法分类错误率较低,对噪声和野点表现出了更好的适应性和鲁棒性。展开更多
为了提高网络入侵检测率,提出一种蚁群算法选择特征与加权支持向量机的网络入侵检测方法.利用蚁群算法选择网络数据的关键特征,计算信息增益获得各个特征权重,根据特征权重构建了加权支持向量机的网络入侵分类器,并通过KDD CUP 99数据...为了提高网络入侵检测率,提出一种蚁群算法选择特征与加权支持向量机的网络入侵检测方法.利用蚁群算法选择网络数据的关键特征,计算信息增益获得各个特征权重,根据特征权重构建了加权支持向量机的网络入侵分类器,并通过KDD CUP 99数据集验证了其有效性.结果表明:该算法能够有效降低特征维数,提高网络入侵检测率和检测效率.展开更多
文摘为了改善传统Relief算法适应性和鲁棒性差的缺陷,融合间距最大化、信息熵和分类局部一致性,构造了新的间距最大化目标函数,并进一步对目标函数进行优化,得到一些新的理论结果。在此基础上提出了新的基于两类数据的Relief特征加权算法LIE-Relief-T(Local consistency information entropy Relief algorithm based twoclass data),并将其扩展到多类数据的特征加权算法LIE-Relief-MLocal consistency information entropy Relief algorithm based multi-class data)。利用UCI和基因表达数据集进行实验验证,结果表明该新的Relief特征加权算法分类错误率较低,对噪声和野点表现出了更好的适应性和鲁棒性。
文摘为了提高网络入侵检测率,提出一种蚁群算法选择特征与加权支持向量机的网络入侵检测方法.利用蚁群算法选择网络数据的关键特征,计算信息增益获得各个特征权重,根据特征权重构建了加权支持向量机的网络入侵分类器,并通过KDD CUP 99数据集验证了其有效性.结果表明:该算法能够有效降低特征维数,提高网络入侵检测率和检测效率.