研究局部场电位信号(Local Field Potential,LFP)的重构问题。依据传统的采样定理对LFP信号进行采样,将会产生庞大的数据量,为LFP信号的传输、存储及处理带来巨大压力。为降低LFP信号的采样速率,减少有效的采样样本,提出压缩感知的局部...研究局部场电位信号(Local Field Potential,LFP)的重构问题。依据传统的采样定理对LFP信号进行采样,将会产生庞大的数据量,为LFP信号的传输、存储及处理带来巨大压力。为降低LFP信号的采样速率,减少有效的采样样本,提出压缩感知的局部场电位信号重构的新方法。利用LFP信号在变换域上的稀疏性,通过随机高斯测量矩阵将LFP信号重构模型转化为压缩感知理论中的稀疏向量重构模型。仿真结果表明,采样速率为奈奎斯特采样速率的一半即可准确重构LFP信号,且正交匹配追踪(OMP)重建算法要优于基追踪(BP)重建算法;当选用离散余弦矩阵(DCT)作为稀疏表示矩阵时,信号在正交匹配追踪和基追踪两种重构算法下都有很高的重构精度。展开更多
文摘研究局部场电位信号(Local Field Potential,LFP)的重构问题。依据传统的采样定理对LFP信号进行采样,将会产生庞大的数据量,为LFP信号的传输、存储及处理带来巨大压力。为降低LFP信号的采样速率,减少有效的采样样本,提出压缩感知的局部场电位信号重构的新方法。利用LFP信号在变换域上的稀疏性,通过随机高斯测量矩阵将LFP信号重构模型转化为压缩感知理论中的稀疏向量重构模型。仿真结果表明,采样速率为奈奎斯特采样速率的一半即可准确重构LFP信号,且正交匹配追踪(OMP)重建算法要优于基追踪(BP)重建算法;当选用离散余弦矩阵(DCT)作为稀疏表示矩阵时,信号在正交匹配追踪和基追踪两种重构算法下都有很高的重构精度。