If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency ...If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency can be locally modulated by altering the parameters of the additional perturbation field. With different detunings of the coherent perturbation field, the absorption peak or transparency window with sharp and high-contrast speetrM feature can be generated in the two-photon absorption spectrum. The physical interpretation of these phenomena is given in terms of the dressed states.展开更多
This is an extended version of the same titled paper presented at the 21st CIRED. It discusses a new technique for identification and location of defective insulator strings in power lines based on the analysis of hig...This is an extended version of the same titled paper presented at the 21st CIRED. It discusses a new technique for identification and location of defective insulator strings in power lines based on the analysis of high frequency signals generated by corona effect. Damaged insulator strings may lead to loss of insulation and hence to the corona effect, in other words, to partial discharges. These partial discharges can be detected by a system composed of a capacitive coupling device (region between the phase and the metal body of a current transformer), a data acquisition board and a computer. Analyzing the waveform of these partial discharges through a neural network based software, it is possible to identify and locate the defective insulator string. This paper discusses how this software analysis works and why its technique is suitable for this application. Hence the results of key tests performed along the development are discussed, pointing out the main factors that affect their performance.展开更多
The power transformer is the most important equipment of the high voltage power grid, however, some traditional methods of online partial discharge monitoring have some limitations. Based on many advantages of the opt...The power transformer is the most important equipment of the high voltage power grid, however, some traditional methods of online partial discharge monitoring have some limitations. Based on many advantages of the optical fiber sensing technology, we have done some research on fiber optics Fabry-Perot (FP) sensing which can be useful for the transformer on online partial discharge monitoring. This research aimed at improving the reliability of power system safety monitoring. We have done some work as follows: designing a set for fiber optics FP sensor preparation, according to the fabrication procedure strictly making out the sensors, building a reasonable signal demodulation system for fiber optics FP sensing, doing a preliminary analysis about online partial discharge signal monitoring, including the research on different discharge intensities with the same measuring distance and different measuring distances with the same discharge intensity, and then making a detailed analysis of the experimental results.展开更多
In this paper, a partial discharge detection system is proposed using an optical fiber Fabry-Perot(FP) interferometric sensor, which is fabricated by photolithography. SU-8 photoresist is employed due to its low Young...In this paper, a partial discharge detection system is proposed using an optical fiber Fabry-Perot(FP) interferometric sensor, which is fabricated by photolithography. SU-8 photoresist is employed due to its low Young's modulus and potentially high sensitivity for ultrasound detection. The FP cavity is formed by coating the fiber end face with two layers of SU-8 so that the cavity can be controlled by the thickness of the middle layer of SU-8. Static pressure measurement experiments are done to estimate the sensing performance. The results show that the SU-8 based sensor has a sensitivity of 154.8 nm/kP a, which is much higher than that of silica based sensor under the same condition. Moreover, the sensor is demonstrated successfully to detect ultrasound from electrode discharge.展开更多
基金Supported by National Natural Science Foundation of China under Grant Nos.10775100 and 10974137
文摘If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency can be locally modulated by altering the parameters of the additional perturbation field. With different detunings of the coherent perturbation field, the absorption peak or transparency window with sharp and high-contrast speetrM feature can be generated in the two-photon absorption spectrum. The physical interpretation of these phenomena is given in terms of the dressed states.
文摘This is an extended version of the same titled paper presented at the 21st CIRED. It discusses a new technique for identification and location of defective insulator strings in power lines based on the analysis of high frequency signals generated by corona effect. Damaged insulator strings may lead to loss of insulation and hence to the corona effect, in other words, to partial discharges. These partial discharges can be detected by a system composed of a capacitive coupling device (region between the phase and the metal body of a current transformer), a data acquisition board and a computer. Analyzing the waveform of these partial discharges through a neural network based software, it is possible to identify and locate the defective insulator string. This paper discusses how this software analysis works and why its technique is suitable for this application. Hence the results of key tests performed along the development are discussed, pointing out the main factors that affect their performance.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 51275373) and the Key Project of National Natural Science Foundation of China (Grant No. 50830230).
文摘The power transformer is the most important equipment of the high voltage power grid, however, some traditional methods of online partial discharge monitoring have some limitations. Based on many advantages of the optical fiber sensing technology, we have done some research on fiber optics Fabry-Perot (FP) sensing which can be useful for the transformer on online partial discharge monitoring. This research aimed at improving the reliability of power system safety monitoring. We have done some work as follows: designing a set for fiber optics FP sensor preparation, according to the fabrication procedure strictly making out the sensors, building a reasonable signal demodulation system for fiber optics FP sensing, doing a preliminary analysis about online partial discharge signal monitoring, including the research on different discharge intensities with the same measuring distance and different measuring distances with the same discharge intensity, and then making a detailed analysis of the experimental results.
基金supported by the National Basic Research Program of China(No.2012CB723405)the Science and Technology Commission of Shanghai Municipality(Nos.13510500300,14DZ1201403 and 14511105602)
文摘In this paper, a partial discharge detection system is proposed using an optical fiber Fabry-Perot(FP) interferometric sensor, which is fabricated by photolithography. SU-8 photoresist is employed due to its low Young's modulus and potentially high sensitivity for ultrasound detection. The FP cavity is formed by coating the fiber end face with two layers of SU-8 so that the cavity can be controlled by the thickness of the middle layer of SU-8. Static pressure measurement experiments are done to estimate the sensing performance. The results show that the SU-8 based sensor has a sensitivity of 154.8 nm/kP a, which is much higher than that of silica based sensor under the same condition. Moreover, the sensor is demonstrated successfully to detect ultrasound from electrode discharge.