期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于聚类合并的局部离群点挖掘算法在入侵检测中的应用
被引量:
2
1
作者
梅孝辉
龙渊
张健博
《计算机与现代化》
2015年第8期67-70,共4页
针对网络安全数据的高维度特征问题,传统的基于聚类的检测算法不能有效发现网络数据中入侵行为细节。本文提出一种改进的DBSCAN离群点挖掘算法LDBSCAN-CM,首先在传统DBSCAN算法中引入局部离群点挖掘概念,计算候选对象的局部离群因子,生...
针对网络安全数据的高维度特征问题,传统的基于聚类的检测算法不能有效发现网络数据中入侵行为细节。本文提出一种改进的DBSCAN离群点挖掘算法LDBSCAN-CM,首先在传统DBSCAN算法中引入局部离群点挖掘概念,计算候选对象的局部离群因子,生成若干个聚类;其次,为了提高挖掘效率,在聚类结果的基础上,进行聚类合并;最后,采用KDD Cup99数据集对改进算法在入侵检测中的应用进行仿真实验。实验结果表明,改进算法LDBSCAN-CM能保证较高的检测率和较低的误检率。
展开更多
关键词
入侵检测
数据
挖掘
LDBSCAN—CM
局部离群点挖掘
聚类合并
下载PDF
职称材料
题名
基于聚类合并的局部离群点挖掘算法在入侵检测中的应用
被引量:
2
1
作者
梅孝辉
龙渊
张健博
机构
重庆大学计算机学院
出处
《计算机与现代化》
2015年第8期67-70,共4页
基金
国家科技支撑计划重点项目(2011BAH25B04)
国家自然科学基金资助项目(61272194)
文摘
针对网络安全数据的高维度特征问题,传统的基于聚类的检测算法不能有效发现网络数据中入侵行为细节。本文提出一种改进的DBSCAN离群点挖掘算法LDBSCAN-CM,首先在传统DBSCAN算法中引入局部离群点挖掘概念,计算候选对象的局部离群因子,生成若干个聚类;其次,为了提高挖掘效率,在聚类结果的基础上,进行聚类合并;最后,采用KDD Cup99数据集对改进算法在入侵检测中的应用进行仿真实验。实验结果表明,改进算法LDBSCAN-CM能保证较高的检测率和较低的误检率。
关键词
入侵检测
数据
挖掘
LDBSCAN—CM
局部离群点挖掘
聚类合并
Keywords
intrusion detection
data mining
LDBSCAN-CM
local outlier mining
clustering merger
分类号
TP393 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于聚类合并的局部离群点挖掘算法在入侵检测中的应用
梅孝辉
龙渊
张健博
《计算机与现代化》
2015
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部