近年来,稀疏表示分类(Sparse Representation Based Classification,SRC)方法在人脸识别中受到越来越多的关注。原始SRC方法使用所有的训练样本组成字典矩阵,当训练样本比较多时,稀疏系数的求解会变得非常耗时。为了解决这一问题,提出...近年来,稀疏表示分类(Sparse Representation Based Classification,SRC)方法在人脸识别中受到越来越多的关注。原始SRC方法使用所有的训练样本组成字典矩阵,当训练样本比较多时,稀疏系数的求解会变得非常耗时。为了解决这一问题,提出一种新的局部稀疏表示分类(Local SRC,LSRC)方法。该方法针对每个测试样本,根据测试样本和训练样本稀疏系数之间的相似性来选择部分训练样本,由这些训练样本组成字典,然后在这个字典上对测试样本进行稀疏分解。该方法性能相比于原始LSRC方法更稳定。在ORL、Yale和AR人脸库上的实验结果表明,该方法的效果优于SRC和LSRC。展开更多
In order to effectively improve the quality of recovered images, a single frame super-resolution reconstruction method based on sparse representation is proposed. The combination method of local orientation estimation...In order to effectively improve the quality of recovered images, a single frame super-resolution reconstruction method based on sparse representation is proposed. The combination method of local orientation estimation-based image patch clustering and principal component analysis is used to obtain a series of geometric dictionaries of different orientations in the dictionary learning process. Subsequently, the dictionary of the nearest orientation is adaptively assigned to each of the input patches that need to be represented in the sparse coding process. Moreover, the consistency of gradients is further incorporated into the basic framework to make more substantial progress in preserving more fine edges and producing sharper results. Two groups of experiments on different types of natural images indicate that the proposed method outperforms some state-of- the-art counterparts in terms of both numerical indicators and visual quality.展开更多
针对滚动轴承振动信号具有较强的非线性,且包含较多冗余和无关特征,导致提取本质特征和故障识别困难,提出一种基于联合局部线性嵌入和稀疏自表示(joint locally linear embedding and sparse self-rep-resentation,JLLESSR)与参数优化...针对滚动轴承振动信号具有较强的非线性,且包含较多冗余和无关特征,导致提取本质特征和故障识别困难,提出一种基于联合局部线性嵌入和稀疏自表示(joint locally linear embedding and sparse self-rep-resentation,JLLESSR)与参数优化支持向量机的滚动轴承故障诊断方法.该方法构造了一个统一的特征提取框架,依靠局部线性嵌入(locally linear embedding,LLE)挖掘高维数据的局部几何结构,同时通过稀疏自表示(self-representation)在低维空间挖掘高维数据的全局几何结构,得到表征滚动轴承运行状态的嵌入特征.然后,将得到的特征输入至交叉优化支持向量机(cross-validation support vector machine,CV-SVM)中进行故障识别.最后,在常见滚动轴承故障数据集上对所提出的方法进行测试,实验结果表明提出的方法能有效识别出滚动轴承不同类型的故障,并且故障诊断精度可达98.5%.展开更多
文摘近年来,稀疏表示分类(Sparse Representation Based Classification,SRC)方法在人脸识别中受到越来越多的关注。原始SRC方法使用所有的训练样本组成字典矩阵,当训练样本比较多时,稀疏系数的求解会变得非常耗时。为了解决这一问题,提出一种新的局部稀疏表示分类(Local SRC,LSRC)方法。该方法针对每个测试样本,根据测试样本和训练样本稀疏系数之间的相似性来选择部分训练样本,由这些训练样本组成字典,然后在这个字典上对测试样本进行稀疏分解。该方法性能相比于原始LSRC方法更稳定。在ORL、Yale和AR人脸库上的实验结果表明,该方法的效果优于SRC和LSRC。
基金The National Natural Science Foundation of China(No.61374194,No.61403081)the National Key Science&Technology Pillar Program of China(No.2014BAG01B03)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20140638)Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘In order to effectively improve the quality of recovered images, a single frame super-resolution reconstruction method based on sparse representation is proposed. The combination method of local orientation estimation-based image patch clustering and principal component analysis is used to obtain a series of geometric dictionaries of different orientations in the dictionary learning process. Subsequently, the dictionary of the nearest orientation is adaptively assigned to each of the input patches that need to be represented in the sparse coding process. Moreover, the consistency of gradients is further incorporated into the basic framework to make more substantial progress in preserving more fine edges and producing sharper results. Two groups of experiments on different types of natural images indicate that the proposed method outperforms some state-of- the-art counterparts in terms of both numerical indicators and visual quality.
文摘针对滚动轴承振动信号具有较强的非线性,且包含较多冗余和无关特征,导致提取本质特征和故障识别困难,提出一种基于联合局部线性嵌入和稀疏自表示(joint locally linear embedding and sparse self-rep-resentation,JLLESSR)与参数优化支持向量机的滚动轴承故障诊断方法.该方法构造了一个统一的特征提取框架,依靠局部线性嵌入(locally linear embedding,LLE)挖掘高维数据的局部几何结构,同时通过稀疏自表示(self-representation)在低维空间挖掘高维数据的全局几何结构,得到表征滚动轴承运行状态的嵌入特征.然后,将得到的特征输入至交叉优化支持向量机(cross-validation support vector machine,CV-SVM)中进行故障识别.最后,在常见滚动轴承故障数据集上对所提出的方法进行测试,实验结果表明提出的方法能有效识别出滚动轴承不同类型的故障,并且故障诊断精度可达98.5%.