由于简单线性迭代聚类算法(Simple Linear Iterative Cluster,SLIC)只考虑了颜色和空间信息导致分割不准确且边界附着度不高,且人工预设的超像素块数也会影响后续分割效果,提出了一种基于纹理特征的自适应SLIC超像素分割算法。先使用图...由于简单线性迭代聚类算法(Simple Linear Iterative Cluster,SLIC)只考虑了颜色和空间信息导致分割不准确且边界附着度不高,且人工预设的超像素块数也会影响后续分割效果,提出了一种基于纹理特征的自适应SLIC超像素分割算法。先使用图像复杂度衡量图像分割的难易程度,根据自适应计算合适的图像分割块数,再基于SLIC算法把局部二值模式(Local Binary Patterns,LBP)纹理特征纳入相似性度量,提高SLIC算法分割精度。实验结果表明,本文方法与SLIC算法相比有更高的评价指标。展开更多
This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) t...This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) texture features and local features are extracted by extracting,reversing,dilating and enhancing the green components of retinal images to construct a 17-dimensional feature vector. A dataset is constructed by using the feature vector and the data manually marked by the experts. The feature is used to generate CART binary tree for nodes,where CART binary tree is as the AdaBoost weak classifier,and AdaBoost is improved by adding some re-judgment functions to form a strong classifier. The proposed algorithm is simulated on the digital retinal images for vessel extraction (DRIVE). The experimental results show that the proposed algorithm has higher segmentation accuracy for blood vessels,and the result basically contains complete blood vessel details. Moreover,the segmented blood vessel tree has good connectivity,which basically reflects the distribution trend of blood vessels. Compared with the traditional AdaBoost classification algorithm and the support vector machine (SVM) based classification algorithm,the proposed algorithm has higher average accuracy and reliability index,which is similar to the segmentation results of the state-of-the-art segmentation algorithm.展开更多
基金National Natural Science Foundation of China(No.61163010)
文摘This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) texture features and local features are extracted by extracting,reversing,dilating and enhancing the green components of retinal images to construct a 17-dimensional feature vector. A dataset is constructed by using the feature vector and the data manually marked by the experts. The feature is used to generate CART binary tree for nodes,where CART binary tree is as the AdaBoost weak classifier,and AdaBoost is improved by adding some re-judgment functions to form a strong classifier. The proposed algorithm is simulated on the digital retinal images for vessel extraction (DRIVE). The experimental results show that the proposed algorithm has higher segmentation accuracy for blood vessels,and the result basically contains complete blood vessel details. Moreover,the segmented blood vessel tree has good connectivity,which basically reflects the distribution trend of blood vessels. Compared with the traditional AdaBoost classification algorithm and the support vector machine (SVM) based classification algorithm,the proposed algorithm has higher average accuracy and reliability index,which is similar to the segmentation results of the state-of-the-art segmentation algorithm.