期刊文献+
共找到103篇文章
< 1 2 6 >
每页显示 20 50 100
基于自适应邻域参数的局部线性嵌入算法的脑力负荷分类
1
作者 苏峥 曲洪权 +2 位作者 柳长安 庞丽萍 陈丽莉 《科学技术与工程》 北大核心 2024年第26期11140-11147,共8页
近年来,随着人工智能领域技术的不断发展,人机交互领域吸引了更多学者的关注。研究表明由脑电图(electroencephalogram,EEG)提取的特征功率谱密度对于脑力负荷的变化比较敏感,但由于其维数过高,容易造成数据灾难。局部线性嵌入(locally ... 近年来,随着人工智能领域技术的不断发展,人机交互领域吸引了更多学者的关注。研究表明由脑电图(electroencephalogram,EEG)提取的特征功率谱密度对于脑力负荷的变化比较敏感,但由于其维数过高,容易造成数据灾难。局部线性嵌入(locally linear embedding,LLE)是常用的非线性降维算法,该算法弥补了传统线性降维算法无法发现数据中非线性结构关系的不足。由于不同数据集中样本分布的稀疏程度和扭曲程度不同,在使用LLE对不同数据集进行降维时的最佳邻域参数也不同。利用样本点之间的欧氏距离和测地距离的关系量化了数据集的扭曲程度,自适应邻域参数的局部线性嵌入算法(variable k-locally linear embedding,VK-LLE)动态地调整每一个数据集的最佳邻域参数,解决了样本分布扭曲程度不同对降维效果造成的干扰。实验结果表明,经过VK-LLE降维后的数据使用支持向量机(support vector machine,SVM)分类精度普遍高于经过传统LLE的降维后再使用SVM分类的精度,对复杂数据集有更强的适应能力。 展开更多
关键词 脑力负荷 局部线性嵌入算法 邻域参数 测地距离
下载PDF
基于局部线性嵌入和深度森林算法的电力客户投诉预测模型 被引量:1
2
作者 张梅 保富 《电测与仪表》 北大核心 2024年第1期107-112,共6页
由于电力市场竞争日益激烈,用户对服务质量的要求不断提高,用户投诉量持续上升。在基于大数据的电力客户投诉预测模型的体系结构基础上,提出一种基于局部线性嵌入和深度森林算法的电力客户投诉预测方法。采用局部线性嵌入算法对客户投... 由于电力市场竞争日益激烈,用户对服务质量的要求不断提高,用户投诉量持续上升。在基于大数据的电力客户投诉预测模型的体系结构基础上,提出一种基于局部线性嵌入和深度森林算法的电力客户投诉预测方法。采用局部线性嵌入算法对客户投诉预测模型的输入特征向量进行降维处理,减少计算量和避免陷入局部最优解;对降维后的投诉预测特征向量进行多粒度扫描,提高其表征学习能力;基于级联森林建立深度森林算法模型,实现客户投诉预测。实际数据的仿真结果表明,与不进行降维处理及其他预测模型相比,文中所提出的预测模型可以更准确地预测客户投诉趋势,为电力企业客户投诉分析和预测提供了参考依据。 展开更多
关键词 电力客户 投诉预测模型 局部线性嵌入 深度森林算法
下载PDF
局部线性下的函数型主成分聚类算法 被引量:1
3
作者 陈海龙 胡晓雪 《统计与决策》 CSSCI 北大核心 2024年第5期39-44,共6页
函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成... 函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成分分析模型(LLE Function Principle Component Analysis,LFPCA)。首先,采用函数型主成分分析法作为降维目标方法,改进了FPCA的算法模型,通过将LLE算法的权重系数矩阵与函数型主成分定义相结合,构建出一个适用于非线性空间下的聚类算法;其次,在求解算法的过程中定义了函数型主成分得分,并结合EM算法构建出GMM模型来近似函数型算法的概率密度函数,使模型更高效且适用性更强;最后,通过随机模拟实验及应用分析验证了LFPCA算法模型在真实数据集上具有良好的聚类效能。 展开更多
关键词 函数型主成分聚类 局部线性嵌入算法 EM算法 GMM模型
下载PDF
基于监督局部线性嵌入算法的玉米田间杂草识别 被引量:9
4
作者 阎庆 梁栋 张东彦 《农业工程学报》 EI CAS CSCD 北大核心 2013年第14期171-177,共7页
杂草精准识别是实现农药定向定量喷洒的基础,是精准农业重要的研究课题之一,对环境保护和生产成本控制都有着重要的现实意义。该文以玉米田间常见杂草为研究对象,首先通过超绿特征去除田间复杂背景的影响,然后采用形态学方法自动分割图... 杂草精准识别是实现农药定向定量喷洒的基础,是精准农业重要的研究课题之一,对环境保护和生产成本控制都有着重要的现实意义。该文以玉米田间常见杂草为研究对象,首先通过超绿特征去除田间复杂背景的影响,然后采用形态学方法自动分割图像中绿色植物区域作为待判别为杂草或作物的识别对象,之后采用基于Fisher投影的监督LLE(locally linear embedding)方法对样本的高维灰度特征进行降维,在低维空间结合支持向量机实现了杂草的快速识别。试验结果表明,该识别方法能更好地发现杂草与玉米的低维特征,对杂草和玉米植株的平均识别率分别达到97.2%和77.8%。该研究结果可为精准喷洒除草剂的自动化实现提供参考。 展开更多
关键词 图像处理 识别 算法 监督局部线性嵌入 支持向量机
下载PDF
一种半监督局部线性嵌入算法的文本分类方法 被引量:9
5
作者 夏士雄 李佑文 周勇 《计算机应用研究》 CSCD 北大核心 2010年第1期64-67,共4页
针对局部线性嵌入算法(LLE)应用于非监督机器学习中的缺陷,将该算法与半监督思想相结合,提出了一种基于半监督局部线性嵌入算法的文本分类方法。通过使用文本数据的流形结构和少量的标签样本,将LLE中的距离矩阵采用分段形式进行调整;使... 针对局部线性嵌入算法(LLE)应用于非监督机器学习中的缺陷,将该算法与半监督思想相结合,提出了一种基于半监督局部线性嵌入算法的文本分类方法。通过使用文本数据的流形结构和少量的标签样本,将LLE中的距离矩阵采用分段形式进行调整;使用调整后的矩阵进行线性重建从而实现数据降维;针对半监督LLE中使用欧氏距离的缺点,采用高斯核函数将欧氏距离进行变换,并用新的核距离取代欧氏距离,提出了基于核的半监督局部线性嵌入算法;最后通过仿真实验验证了改进算法的有效性。 展开更多
关键词 局部线性嵌入算法 半监督学习 流形学习 文本分类 核函数
下载PDF
基于局部线性嵌入算法的化工过程故障检测 被引量:12
6
作者 马玉鑫 王梦灵 侍洪波 《化工学报》 EI CAS CSCD 北大核心 2012年第7期2121-2127,共7页
随着工业过程日趋复杂,系统安全及产品质量的在线监控也变得日益重要。针对化工过程的非线性特点,提出了一种新的基于局部线性嵌入(locally linear embedding,LLE)流形学习算法和支持向量数据描述(sup-port vector data description,SV... 随着工业过程日趋复杂,系统安全及产品质量的在线监控也变得日益重要。针对化工过程的非线性特点,提出了一种新的基于局部线性嵌入(locally linear embedding,LLE)流形学习算法和支持向量数据描述(sup-port vector data description,SVDD)的故障检测方法。首先,使用LLE提取高维数据的低维子流形,进行维数约减,以保存更多原有系统的非线性特性,通过局部线性回归得到高维数据空间到低维特征空间的映射矩阵,保证了算法的实时性;然后,为了避免数据噪声的累加对传统统计量的影响,引入SVDD直接根据特征空间建立SVDD模型,构造统计量并确定其控制限;最后,通过数字仿真及Tennessee Eastman(TE)过程仿真研究验证了本文方法的有效性。 展开更多
关键词 局部线性嵌入算法 支持向量数据描述 故障检测
下载PDF
融合夹角度量的局部线性嵌入算法 被引量:4
7
作者 刘嘉敏 罗甫林 +1 位作者 黄鸿 杨璧泽 《光电工程》 CAS CSCD 北大核心 2013年第6期97-105,共9页
局部线性嵌入(LLE)等流形学习算法中需要通过欧氏距离来度量数据点之间的近邻关系,但欧氏距离只表示两点间的直线距离,在高维空间中不一定能真实反映出图像数据点之间的空间分布情况。针对此问题,本文提出了融合数据间夹角和欧氏距离度... 局部线性嵌入(LLE)等流形学习算法中需要通过欧氏距离来度量数据点之间的近邻关系,但欧氏距离只表示两点间的直线距离,在高维空间中不一定能真实反映出图像数据点之间的空间分布情况。针对此问题,本文提出了融合数据间夹角和欧氏距离度量LLE近邻和分类的方法。该方法通过融合图像数据间的夹角和欧氏距离来度量图像数据点之间的近邻关系,寻找k个近邻点,实现更有效的局部重构,提取鉴别特征,然后用融合了数据间夹角的最近邻分类器对数据进行分类。在KSC和Indian Pine高光谱遥感影像数据集上的实验结果表明:在总体分类精度上,本文算法比LLE提升了1.54%~6.91%。 展开更多
关键词 高光谱影像 流形学习 局部线性嵌入(lle) 近邻点
下载PDF
基于局部线性嵌入算法的柴油机故障诊断研究 被引量:3
8
作者 董安 潘宏侠 龚明 《计算机工程与应用》 CSCD 2013年第22期236-240,共5页
为提高柴油机故障诊断准确率和效率,提出了改进局部线性嵌入算法的柴油机诊断系统。应用小波包能量谱分析方法提取某柴油机振动信号的特征值,将提取的高维特征向量映射到低维空间上,能将高维特征向量进行优化,即特征值的二次提取。该改... 为提高柴油机故障诊断准确率和效率,提出了改进局部线性嵌入算法的柴油机诊断系统。应用小波包能量谱分析方法提取某柴油机振动信号的特征值,将提取的高维特征向量映射到低维空间上,能将高维特征向量进行优化,即特征值的二次提取。该改进算法可模糊化近邻点k的选择,从而提高计算的速度,并应用SOM-BP神经网络进行故障识别。实验表明,经过局部线性嵌入算法的特征值优化,能减少SOM-BP神经网络的输入节点,可在一定程度上提高故障识别的效率和准确率。 展开更多
关键词 局部线性嵌入算法 特征值优化 SOM BP神经网络
下载PDF
局部线性嵌入算法及其在信号处理中的应用 被引量:2
9
作者 侯澍旻 李友荣 刘光临 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第z2期1337-1339,共3页
局部线性嵌入算法将高维信息通过变换降到低维数的特征空间中,从而压缩数据突出信号主要特征。该算法很好地弥补了线性降维不能发现数据集非线性结构的不足。本文详细介绍了局部线性嵌入算法的基本原理和运算步骤,并将该方法应用于混有... 局部线性嵌入算法将高维信息通过变换降到低维数的特征空间中,从而压缩数据突出信号主要特征。该算法很好地弥补了线性降维不能发现数据集非线性结构的不足。本文详细介绍了局部线性嵌入算法的基本原理和运算步骤,并将该方法应用于混有高斯白噪声的ECG信号降噪和混有弱冲击正弦信号的特征提取中。处理结果表明,局部线性嵌入算法不仅可以处理线性信号,还能较好地处理非线性信号,具有较好地工程推广价值。 展开更多
关键词 局部线性嵌入算法 信号处理 降噪 特征提取
下载PDF
基于局部线性嵌入的半监督仿射传播聚类算法 被引量:3
10
作者 赵小强 谢亚萍 《兰州理工大学学报》 CAS 北大核心 2015年第1期96-100,共5页
针对运用半监督仿射传播聚类算法处理高维数据时聚类精度低和计算量大的问题,提出一种基于局部线性嵌入的半监督仿射传播聚类算法.该算法首先通过LLE算法将高维输入数据集映射到低维空间得到低维数据集,计算低维数据集的相似度矩阵,再... 针对运用半监督仿射传播聚类算法处理高维数据时聚类精度低和计算量大的问题,提出一种基于局部线性嵌入的半监督仿射传播聚类算法.该算法首先通过LLE算法将高维输入数据集映射到低维空间得到低维数据集,计算低维数据集的相似度矩阵,再用半监督算法调整相似度矩阵,最后用仿射传播聚类算法对低维数据进行聚类分析.仿真结果表明,本文提出的算法与半监督仿射传播聚类算法相比,在处理高维数据时聚类效果更好,精度更高,迭代次数更少. 展开更多
关键词 数据挖掘 半监督 仿射传播聚类 局部线性嵌入算法
下载PDF
一种融合聚类的监督局部线性嵌入算法研究 被引量:2
11
作者 王东 张强 严亮 《半导体光电》 北大核心 2017年第3期419-424,共6页
监督局部线性嵌入算法(SLLE)通过数据点的标签信息进行高维数据在低维特征空间的映射,针对SLLE在均匀化高维数据的分布和最小化重构代价时,忽略类内偏离总体分布的稀疏离散数据在线性重构过程中可能错误地投影在其他超平面的情形,引入Km... 监督局部线性嵌入算法(SLLE)通过数据点的标签信息进行高维数据在低维特征空间的映射,针对SLLE在均匀化高维数据的分布和最小化重构代价时,忽略类内偏离总体分布的稀疏离散数据在线性重构过程中可能错误地投影在其他超平面的情形,引入Kmeans++算法调整样本间距离,进行最优近邻点的选择,从而更有效地反映数据在高维空间中的实际分布,使降维后的数据具备更好的可分性。通过ORL以及Yale人脸数据集上的仿真实验,结果显示,该方法具有更强的泛化能力及更高的识别率。 展开更多
关键词 降维 监督局部线性嵌入算法 最优近邻点 人脸识别 聚类算法
下载PDF
利用曲波变换和局部线性嵌入算法的SAR图像海面油膜特征提取 被引量:1
12
作者 周慧 陈澎 《电讯技术》 北大核心 2019年第1期27-32,共6页
溢油事故带来的海洋污染问题日益严重,SAR图像快速准确地自动识别为溢油事故的处理和决策支持提供了重要前提。为了获得更高的油膜识别准确率,提出了一种基于曲波变换(Curvelet)和局部线性嵌入(Local Linear Embedding,LLE)算法的SAR图... 溢油事故带来的海洋污染问题日益严重,SAR图像快速准确地自动识别为溢油事故的处理和决策支持提供了重要前提。为了获得更高的油膜识别准确率,提出了一种基于曲波变换(Curvelet)和局部线性嵌入(Local Linear Embedding,LLE)算法的SAR图像特征提取方法。首先,利用Curvelet对图像进行分解,选取包含了主要信息的低频分量作为新的图像矩阵;然后,利用LLE进行非线性降维,提取图像分类特征。为了验证提取特征的有效性,所提的Curvelet-LLE算法与PCA、LLE、等距特征映射(Isomap)、Curvelet变换和Fisher判别分析(Curvelet-KFD)、Wavelet-LLE等特征提取算法,利用K最近邻和支持向量机分类器分别进行了对比实验。实验结果表明,Curvelet-LLE算法能更有效地提取SAR图像油膜识别的分类鉴别特征,其准确率相对较高,具有较好的实用性。 展开更多
关键词 SAR图像 油膜特征提取 曲波变换 局部线性嵌入(lle)
下载PDF
基于自适应邻域选择的局部线性嵌入算法 被引量:1
13
作者 张志友 周佳燕 +1 位作者 邵海见 鲍安平 《南京理工大学学报》 EI CAS CSCD 北大核心 2017年第6期748-752,共5页
为了提高高维数据维数约简的计算效率,基于局部邻域相关的权重与稀疏矩阵,提出了1种改进的局部线性嵌入算法。对于高维数据维数约简的信息量估计,采用了相关维数估计方法来计算一致流形信息量的上界。采用Swiss、Broken swiss、Helix、T... 为了提高高维数据维数约简的计算效率,基于局部邻域相关的权重与稀疏矩阵,提出了1种改进的局部线性嵌入算法。对于高维数据维数约简的信息量估计,采用了相关维数估计方法来计算一致流形信息量的上界。采用Swiss、Broken swiss、Helix、Twinpeaks和Intersect 5种经典数据集进行实验评估。实验结果显示,与局部线性嵌入算法相比,针对5种经典数据集,该文算法速度分别提高了27.60%、27.51%、27.18%、28.31%和45.28%。 展开更多
关键词 自适应邻域选择 局部线性嵌入 稀疏矩阵 数据降维 流形算法
下载PDF
基于核局部线性嵌入算法的图像去噪方法 被引量:1
14
作者 徐春明 《计算机工程》 CAS CSCD 北大核心 2009年第20期208-209,215,共3页
利用局部线性嵌入算法进行图像去噪时,如果局部近邻样本呈现非线性关系,图像去噪效果会受到影响。针对该问题,提出基于核局部线性嵌入算法的图像去噪方法。通过非线性核函数将样本映射到高维线性空间,在高维空间运用局部线性嵌入算法进... 利用局部线性嵌入算法进行图像去噪时,如果局部近邻样本呈现非线性关系,图像去噪效果会受到影响。针对该问题,提出基于核局部线性嵌入算法的图像去噪方法。通过非线性核函数将样本映射到高维线性空间,在高维空间运用局部线性嵌入算法进行图像去噪。实验结果表明,该方法能有效地对高维非线性图像进行去噪,性能优于中值滤波算法和局部线性嵌入算法。 展开更多
关键词 图像去噪 局部线性嵌入算法 局部线性嵌入算法
下载PDF
基于局部线性嵌入与差分进化的MOEA/D算法 被引量:1
15
作者 耿焕同 周利发 +1 位作者 丁洋洋 周山胜 《计算机工程》 CAS CSCD 北大核心 2019年第3期162-168,共7页
针对基于分解的多目标进化算法选择压力低、收敛速度慢的问题,提出一种局部线性嵌入(LLE)差分进化算法。根据LLE特性降低种群目标空间维数,利用快速非支配排序对种群分支配解进行分层,进而通过差分进化操作提高种群收敛速度。实验结果表... 针对基于分解的多目标进化算法选择压力低、收敛速度慢的问题,提出一种局部线性嵌入(LLE)差分进化算法。根据LLE特性降低种群目标空间维数,利用快速非支配排序对种群分支配解进行分层,进而通过差分进化操作提高种群收敛速度。实验结果表明,与dMOPSO算法相比,该算法在保证多样性的同时具有较高的选择压力和较快的收敛速度。 展开更多
关键词 局部线性嵌入 差分进化 进化算子 高维 多目标进化算法
下载PDF
基于局部线性嵌入算法的柴油机测点优化 被引量:1
16
作者 董安 潘宏侠 龚明 《车辆与动力技术》 2013年第4期53-57,62,共6页
为了能够高效地进行柴油机故障诊断,需要找出敏感性和稳定性好的振动测点,提出了一种改进的局部线性嵌入算法对柴油机振动测点进行优化处理.该算法实质是在保持原始数据性质的情况下,将各测点的高维特征数据映射到低维空间中,并以2-范... 为了能够高效地进行柴油机故障诊断,需要找出敏感性和稳定性好的振动测点,提出了一种改进的局部线性嵌入算法对柴油机振动测点进行优化处理.该算法实质是在保持原始数据性质的情况下,将各测点的高维特征数据映射到低维空间中,并以2-范数为各测点的阈值作为测点优化的标准.以某12缸柴油机为例,应用小波包能量谱分析方法来提取各振动测点信号的特征值;应用局部线性嵌入算法进行测点优化,通过对比实验结果可知,局部线性嵌入算法能够有效地区分不同故障测点敏感程度,从而可找出各故障敏感的测点位置,在一定程度上可提高故障识别率与效率. 展开更多
关键词 局部线性嵌入算法 测点优化 小波包变换
下载PDF
基于多信息融合的自适应局部线性嵌入算法
17
作者 刘庆强 魏朝阳 《电子测量技术》 北大核心 2023年第24期112-118,共7页
局部线性嵌入算法LLE的降维性能与挖掘的流形结构密切相关,但LLE挖掘的流形结构单一,并且对邻域参数选取敏感,无法提取全面的流形局部结构,限制了LLE的降维性能。为此,本文提出基于多信息融合的自适应局部线性嵌入算法MIF-ALLE。MIF-ALL... 局部线性嵌入算法LLE的降维性能与挖掘的流形结构密切相关,但LLE挖掘的流形结构单一,并且对邻域参数选取敏感,无法提取全面的流形局部结构,限制了LLE的降维性能。为此,本文提出基于多信息融合的自适应局部线性嵌入算法MIF-ALLE。MIF-ALLE首先利用切空间近似判据自适应选择邻域参数,获取更准确的局部邻域;然后,将局部邻域中蕴含的切空间角度信息与局部线性信息相融合,挖掘更全面的流形局部结构,降低局部低维嵌入的偏差;最后,在公开轴承数据集以及实验室提取的轴承数据集上进行实验验证。实验结果表明:MIF-ALLE可以挖掘更全面的流形结构,提取更显著的特征,轴承故障诊断准确率最高可达100%。 展开更多
关键词 局部线性嵌入算法 流形结构 自适应邻域 轴承故障诊断
下载PDF
基于局部线性嵌入的随机森林算法
18
作者 陈树娟 《科技通报》 北大核心 2013年第8期33-35,共3页
随机森林是一种优秀的分类算法,然而随机森林算法不能有效的判断冗余属性,因此影响了在含有冗余属性的数据集上的分类效果。针对这一问题,本文提出了一种基于局部线性嵌入的随机森林算法。该算法利用局部线性嵌入算法对冗余属性数据集... 随机森林是一种优秀的分类算法,然而随机森林算法不能有效的判断冗余属性,因此影响了在含有冗余属性的数据集上的分类效果。针对这一问题,本文提出了一种基于局部线性嵌入的随机森林算法。该算法利用局部线性嵌入算法对冗余属性数据集进行降维,然后利用随机森林算法进行分类学习。在UCI标准数据集上的仿真实验说明,本文算法是一种优秀的含冗余属性数据集分类算法。 展开更多
关键词 随机森林 分类算法 局部线性嵌入 降维
下载PDF
自适应近邻的局部线性嵌入算法 被引量:4
19
作者 张兴福 黄少滨 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2012年第4期489-495,共7页
在局部线性嵌入算法(LLE)中寻找最优近邻数常用试凑法进行搜索,需要大量的时间才能得到最优结果.为此提出基于自适应近邻的局部线性嵌入算法(ANLLE),算法首先给出一个相似性度量函数,然后据此为各个样本设定阈值,根据每个样本周围数据... 在局部线性嵌入算法(LLE)中寻找最优近邻数常用试凑法进行搜索,需要大量的时间才能得到最优结果.为此提出基于自适应近邻的局部线性嵌入算法(ANLLE),算法首先给出一个相似性度量函数,然后据此为各个样本设定阈值,根据每个样本周围数据分布情况,为每个样本自动设置不同近邻数,最后在各个样本近邻数不相同情况下进行数据降维及待测样本的分类.在人脸数据库及手写数字数据库上的对比实验表明,ANLLE算法识别性能高于标准LLE算法及邻域线性嵌入算法(NLE). 展开更多
关键词 局部线性嵌入 自适应近邻 维数约减 嵌入算法 最优近邻 相似性度量函数
下载PDF
基于Kernel Rank-order距离的重构权重局部线性嵌入算法 被引量:5
20
作者 鞠玲 王正群 +1 位作者 徐春林 杨洋 《计算机应用与软件》 北大核心 2020年第8期149-155,206,共8页
针对局部线性嵌入算法(Local Linear Embedding,LLE)短路、离群点影响大和结构信息缺乏等问题,提出基于Kernel Rank-order距离的重构权重局部线性嵌入算法(Reconstruction weight Local Linear Embedding algorithm based on Kernel Ran... 针对局部线性嵌入算法(Local Linear Embedding,LLE)短路、离群点影响大和结构信息缺乏等问题,提出基于Kernel Rank-order距离的重构权重局部线性嵌入算法(Reconstruction weight Local Linear Embedding algorithm based on Kernel Rank-order distance,KRLLE)。用核函数将样本点映射到高维使其更加线性可分,进而获得较好的近邻点集;计算重构权重系数进而得到加权重构权重,重构权重系数根据两点间相关性越大对重构贡献越大的特性来减小离群点的影响,并利用两点间的欧氏距离与测地线距离之比有效地将短路点排除在外;根据加权重构权重得到低维嵌入坐标。在ORL、Yale人脸库和MNIST手写体数据库上的实验表明,KRLLE对离群点具有更好的鲁棒性并且由于增加了结构信息,识别率得到了提高。 展开更多
关键词 人脸识别 流形学习 权重改进 局部线性嵌入算法 降维
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部