期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度稀疏学习的鲁棒视觉跟踪 被引量:2
1
作者 王鑫 侯志强 +2 位作者 余旺盛 戴铂 金泽芬芬 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2017年第12期2554-2563,共10页
视觉跟踪中,高效鲁棒的特征表达是复杂环境下影响跟踪性能的重要因素。提出一种深度稀疏神经网络模型,在提取更加本质抽象特征的同时,避免了复杂费时的模型预训练过程。对单一正样本进行数据扩充,解决了在线跟踪时正负样本不平衡的问题... 视觉跟踪中,高效鲁棒的特征表达是复杂环境下影响跟踪性能的重要因素。提出一种深度稀疏神经网络模型,在提取更加本质抽象特征的同时,避免了复杂费时的模型预训练过程。对单一正样本进行数据扩充,解决了在线跟踪时正负样本不平衡的问题,提高了模型稳定性。利用密集采样搜索算法,生成局部置信图,克服了采样粒子漂移现象。为进一步提高模型的鲁棒性,还分别提出了相应的模型参数更新和搜索区域更新策略。大量实验结果表明:与当前主流跟踪算法相比,该算法对于复杂环境下的跟踪问题具有良好的鲁棒性,有效地抑制了跟踪漂移,且具有较快的跟踪速率。 展开更多
关键词 视觉跟踪 深度学习 深度稀疏神经网络 稀疏自编码器 局部置信图
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部