启发于过完备字典中稀疏线性组合的高分辨率图像的块与其对应的低分辨率局部块能很好地匹配,提出一种回归函数结合局部自相似的单帧图像超分辨率算法;该算法结合了实例图像块的学习和局部自相似图像块的学习,实例图像块的局部回归避免...启发于过完备字典中稀疏线性组合的高分辨率图像的块与其对应的低分辨率局部块能很好地匹配,提出一种回归函数结合局部自相似的单帧图像超分辨率算法;该算法结合了实例图像块的学习和局部自相似图像块的学习,实例图像块的局部回归避免了从低分辨率到高分辨率图像块映射的病态性问题;通过局部自相似实例图像块学习获得非线性映射函数的一阶近似,从而获得低分辨率图像块相对应的高分辨率图像块,克服了实例图像块算法不足的问题;实验采用峰值信噪比(Peak Signal to Noise Ratio,PSNR)和均方误差(Root-mean-square error,RMSE)比较各算法效果;从实验结果数据可以看出,大多数情况下,提出的算法具有最高的峰值信噪比和最低的均方根误差,从实验结果图可以看出,提出的算法的纹理保留的最好,图像自然性最好,且运行时间也少于其他几种较新的算法,表明提出的算法更适合用于解决实际问题。展开更多
针对Shearlet收缩去噪引入的Gibbs伪影和"裂痕"现象,提出一种结合非局部自相似的Shearlet自适应收缩图像去噪方法。首先,对噪声图像进行多方向多尺度的Shearlet分解;然后,基于高斯比例混合(GSM)模型的Shearlet系数分布建模,...针对Shearlet收缩去噪引入的Gibbs伪影和"裂痕"现象,提出一种结合非局部自相似的Shearlet自适应收缩图像去噪方法。首先,对噪声图像进行多方向多尺度的Shearlet分解;然后,基于高斯比例混合(GSM)模型的Shearlet系数分布建模,利用贝叶斯最小二乘估计对Shearlet系数进行自适应收缩去噪,重构得到初始去噪图像;最后,利用非局域自相似模型对初始去噪图像进行滤波处理,得到最终的去噪图像。实验结果表明,所提方法在更好地保留边缘特征的同时,有效地去除噪声和收缩去噪引入的Gibbs伪影,该方法获得的峰值信噪比(PSNR)和结构自相似指标(SSIM)比基于非抽样剪切波变换(NSST)的硬阈值去噪方法提高1.41 d B和0.08;比非抽样Shearlet域GSM模型去噪方法提高1.04 d B和0.045;比基于三变量模型的剪切波去噪方法提高0.64 d B和0.025。展开更多
针对视频图像的特点,提出基于局部自相似性的视频图像超分辨率算法。该算法不依赖自然图像数据库作为样本块的图像来源,而是利用局部自相似性,通过在相关坐标邻域中搜索子图像块以实现高频补偿。设计上采样和下采样滤波器,以实现对高频...针对视频图像的特点,提出基于局部自相似性的视频图像超分辨率算法。该算法不依赖自然图像数据库作为样本块的图像来源,而是利用局部自相似性,通过在相关坐标邻域中搜索子图像块以实现高频补偿。设计上采样和下采样滤波器,以实现对高频补偿后的图像进行滤波从而产生最终的样本块,采用逐级放大、分多步组合达到视频图像的放大,从而实现了视频图像超分辨率算法。实验结果表明,对于视频序列图像,在主观视觉效果和均方根误差(root mean square error,RMSE)、结构自相似性算子(structural similarity index measurement,SSIM)等方面,算法能显著地提高其分辨率,取得很好的效果。同时,对视频图像利用局部自相似性方法,减少了图像块的检索时间,降低了算法运算量。展开更多
针对基于稀疏重建的图像超分辨率(SR)算法一般需要外部训练样本,重建质量取决于待重建图像与训练样本的相似度的问题,提出一种基于局部回归模型的图像超分辨率重建算法。利用局部图像结构会在不同的图像尺度对应位置重复出现的事实,...针对基于稀疏重建的图像超分辨率(SR)算法一般需要外部训练样本,重建质量取决于待重建图像与训练样本的相似度的问题,提出一种基于局部回归模型的图像超分辨率重建算法。利用局部图像结构会在不同的图像尺度对应位置重复出现的事实,建立从低到高分辨率图像块的非线性映射函数一阶近似模型用于超分辨率重建。其中,非线性映射函数的先验模型是直接对输入图像及其低频带图像的对应位样本块对通过字典学习的方法得到。重建图像块时利用图像中的非局部自相似性,对多个非局部自相似块分别应用一阶回归模型,加权综合得到高分辨率图像块。实验结果表明,该算法重建的图像与同样利用图像具有自相似性的相关超分辨率算法相比,峰值信噪比(PSNR)平均提高0.3~1.1 d B,主观重建效果亦有明显提高。展开更多
文摘启发于过完备字典中稀疏线性组合的高分辨率图像的块与其对应的低分辨率局部块能很好地匹配,提出一种回归函数结合局部自相似的单帧图像超分辨率算法;该算法结合了实例图像块的学习和局部自相似图像块的学习,实例图像块的局部回归避免了从低分辨率到高分辨率图像块映射的病态性问题;通过局部自相似实例图像块学习获得非线性映射函数的一阶近似,从而获得低分辨率图像块相对应的高分辨率图像块,克服了实例图像块算法不足的问题;实验采用峰值信噪比(Peak Signal to Noise Ratio,PSNR)和均方误差(Root-mean-square error,RMSE)比较各算法效果;从实验结果数据可以看出,大多数情况下,提出的算法具有最高的峰值信噪比和最低的均方根误差,从实验结果图可以看出,提出的算法的纹理保留的最好,图像自然性最好,且运行时间也少于其他几种较新的算法,表明提出的算法更适合用于解决实际问题。
文摘针对Shearlet收缩去噪引入的Gibbs伪影和"裂痕"现象,提出一种结合非局部自相似的Shearlet自适应收缩图像去噪方法。首先,对噪声图像进行多方向多尺度的Shearlet分解;然后,基于高斯比例混合(GSM)模型的Shearlet系数分布建模,利用贝叶斯最小二乘估计对Shearlet系数进行自适应收缩去噪,重构得到初始去噪图像;最后,利用非局域自相似模型对初始去噪图像进行滤波处理,得到最终的去噪图像。实验结果表明,所提方法在更好地保留边缘特征的同时,有效地去除噪声和收缩去噪引入的Gibbs伪影,该方法获得的峰值信噪比(PSNR)和结构自相似指标(SSIM)比基于非抽样剪切波变换(NSST)的硬阈值去噪方法提高1.41 d B和0.08;比非抽样Shearlet域GSM模型去噪方法提高1.04 d B和0.045;比基于三变量模型的剪切波去噪方法提高0.64 d B和0.025。
文摘针对视频图像的特点,提出基于局部自相似性的视频图像超分辨率算法。该算法不依赖自然图像数据库作为样本块的图像来源,而是利用局部自相似性,通过在相关坐标邻域中搜索子图像块以实现高频补偿。设计上采样和下采样滤波器,以实现对高频补偿后的图像进行滤波从而产生最终的样本块,采用逐级放大、分多步组合达到视频图像的放大,从而实现了视频图像超分辨率算法。实验结果表明,对于视频序列图像,在主观视觉效果和均方根误差(root mean square error,RMSE)、结构自相似性算子(structural similarity index measurement,SSIM)等方面,算法能显著地提高其分辨率,取得很好的效果。同时,对视频图像利用局部自相似性方法,减少了图像块的检索时间,降低了算法运算量。
文摘针对基于稀疏重建的图像超分辨率(SR)算法一般需要外部训练样本,重建质量取决于待重建图像与训练样本的相似度的问题,提出一种基于局部回归模型的图像超分辨率重建算法。利用局部图像结构会在不同的图像尺度对应位置重复出现的事实,建立从低到高分辨率图像块的非线性映射函数一阶近似模型用于超分辨率重建。其中,非线性映射函数的先验模型是直接对输入图像及其低频带图像的对应位样本块对通过字典学习的方法得到。重建图像块时利用图像中的非局部自相似性,对多个非局部自相似块分别应用一阶回归模型,加权综合得到高分辨率图像块。实验结果表明,该算法重建的图像与同样利用图像具有自相似性的相关超分辨率算法相比,峰值信噪比(PSNR)平均提高0.3~1.1 d B,主观重建效果亦有明显提高。