The photocatalytic reduction of CO2 with H2O to fuels and chemicals using solar energy is one of the most attractive but highly difficult routes.Thus far,only a very limited number of photocatalysts has been reported ...The photocatalytic reduction of CO2 with H2O to fuels and chemicals using solar energy is one of the most attractive but highly difficult routes.Thus far,only a very limited number of photocatalysts has been reported to be capable of catalyzing the photocatalytic reduction of CO2 under visible light.The utilization of the localized surface plasmon resonance(LSPR)phenomenon is an attractive strategy for developing visible-light photocatalysts.Herein,we have succeeded in synthesizing plasmonic MoO3?x-TiO2 nanocomposites with tunable LSPR by a simple solvothermal method.The well-structured nanocomposite containing two-dimensional(2D)molybdenum oxide(MoO3?x)nanosheets and one-dimensional(1D)titanium oxide nanotubes(TiO2-NT)showed LSPR absorption band in the visible-light region,and the incorporation of TiO2-NT significantly enhanced the LSPR absorption band.The MoO3?x-TiO2-NT nanocomposite is promising for application in the photocatalytic reduction of CO2 with H2O under visible light irradiation.展开更多
文摘The photocatalytic reduction of CO2 with H2O to fuels and chemicals using solar energy is one of the most attractive but highly difficult routes.Thus far,only a very limited number of photocatalysts has been reported to be capable of catalyzing the photocatalytic reduction of CO2 under visible light.The utilization of the localized surface plasmon resonance(LSPR)phenomenon is an attractive strategy for developing visible-light photocatalysts.Herein,we have succeeded in synthesizing plasmonic MoO3?x-TiO2 nanocomposites with tunable LSPR by a simple solvothermal method.The well-structured nanocomposite containing two-dimensional(2D)molybdenum oxide(MoO3?x)nanosheets and one-dimensional(1D)titanium oxide nanotubes(TiO2-NT)showed LSPR absorption band in the visible-light region,and the incorporation of TiO2-NT significantly enhanced the LSPR absorption band.The MoO3?x-TiO2-NT nanocomposite is promising for application in the photocatalytic reduction of CO2 with H2O under visible light irradiation.