期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
一种基于多类别信息的局部潜在语义分析算法研究 被引量:2
1
作者 陈珂 柯文德 +1 位作者 刘美 张良均 《南京邮电大学学报(自然科学版)》 北大核心 2016年第1期119-124,共6页
为了有效解决现有Web文本分类方法普遍存在的分类效果不佳、性能低下等问题,文中基于局部潜在语义分析的理论原理,利用支持向量机分类优势,设计出一种基于文档与类别之间相关度的生成局部区域的算法,即S-LLSA。该算法在奇异值分解过程... 为了有效解决现有Web文本分类方法普遍存在的分类效果不佳、性能低下等问题,文中基于局部潜在语义分析的理论原理,利用支持向量机分类优势,设计出一种基于文档与类别之间相关度的生成局部区域的算法,即S-LLSA。该算法在奇异值分解过程中引入不同类别信息,分析特征词的局部特征,使用支持向量机分类器计算文本对类别的相关度参数,并应用于局部区域生成过程。通过实验表明,S-LLSA算法有效解决了局部区域如何进行局部奇异值分解问题,有效地提高并优化了Web文本分类效果,更好地表示了Web文本潜在语义空间。 展开更多
关键词 文本分类 局部潜在语义分析 支持向量机 奇异值分解 S-LLSA
下载PDF
基于相关度的局部潜在语义分析算法研究 被引量:9
2
作者 吴勇 刘钰峰 《控制工程》 CSCD 北大核心 2017年第8期1701-1706,共6页
针对现有的web文本分类与表示方法中出现的各种分类效果与性能优化等问题,提出基于局部潜在语义分析的理论原理,利用支持向量机分类优势,设计出一种基于文档与类别之间相关度的生成局部区域的算法,即S-LLSA。该算法在语义分析使用矩阵... 针对现有的web文本分类与表示方法中出现的各种分类效果与性能优化等问题,提出基于局部潜在语义分析的理论原理,利用支持向量机分类优势,设计出一种基于文档与类别之间相关度的生成局部区域的算法,即S-LLSA。该算法在语义分析使用矩阵的奇异值分解过程中引入不同类别信息,分析特征词的局部特征,使用支持向量机分类器计算文本对类别的相关度参数,并应用于局部区域生成过程。通过实验表明,S-LLSA算法有效解决了局部区域如何进行局部奇异值分解问题,极大改进了web文本分类效果与优化问题,更好地表示了web文本潜在语义空间。 展开更多
关键词 文本分类 局部潜在语义分析 支持向量机 奇异值分解 S—LLSA
下载PDF
基于SVM的局部潜在语义分析算法研究 被引量:3
3
作者 谭光兴 刘臻晖 《计算机工程与科学》 CSCD 北大核心 2016年第1期177-182,共6页
针对现有的Web文本分类与表示方法中出现的各种分类效果与性能优化等问题,基于局部潜在语义分析的理论原理,利用支持向量机分类优势,设计出一种基于文档与类别之间相关度的生成局部区域的算法,即S-LLSA。该算法在语义分析使用矩阵的奇... 针对现有的Web文本分类与表示方法中出现的各种分类效果与性能优化等问题,基于局部潜在语义分析的理论原理,利用支持向量机分类优势,设计出一种基于文档与类别之间相关度的生成局部区域的算法,即S-LLSA。该算法在语义分析使用矩阵的奇异值分解过程中引入不同类别信息,分析特征词的局部特征,使用支持向量机分类器计算文本对类别的相关度参数,并应用于局部区域生成过程。通过实验表明,S-LLSA算法有效解决了局部区域如何进行局部奇异值分解问题,有效提高并优化了Web文本分类效果,更好地表示了Web文本潜在语义空间。 展开更多
关键词 文本分类 局部潜在语义分析 支持向量机 奇异值分解 S-LLSA
下载PDF
基于多类别相关度的潜在语义挖掘算法
4
作者 伍永豪 柯赟 杨华勇 《计算机工程与设计》 北大核心 2016年第7期1817-1821,共5页
鉴于当前web文本分类存在的问题,阐明基于文档和类别相关度的生成局部区域的方法,即S-LLSA。将各种类别信息应用于语义分析中,研究特征词的局部特征,通过相关分类器求解文本对类别的相关度参数,在此基础上,将其引入到生成局部区域的环... 鉴于当前web文本分类存在的问题,阐明基于文档和类别相关度的生成局部区域的方法,即S-LLSA。将各种类别信息应用于语义分析中,研究特征词的局部特征,通过相关分类器求解文本对类别的相关度参数,在此基础上,将其引入到生成局部区域的环节之中。实验结果表明,S-LLSA能够妥善处理局部区域奇异值分解问题,在很大程度上改善了web文本分类结果,使其潜在语义空间得到有效描述。 展开更多
关键词 文本分类 局部潜在语义分析 支持向量机 奇异值分解 S-LLSA
下载PDF
基于情感角色模型的文本情感分类方法 被引量:3
5
作者 胡杨 戴丹 +3 位作者 刘骊 冯旭鹏 刘利军 黄青松 《计算机应用》 CSCD 北大核心 2015年第5期1310-1313,1319,共5页
针对传统情感分类方法因情感项指向不明引发的误判和隐藏观点遗漏等问题,提出一种基于评价对象情感角色模型的文本情感分类方法。该方法首先识别文本中的潜在评价对象,通过局部语义分析对潜在评价对象所在语句进行情感标注,确定潜在评... 针对传统情感分类方法因情感项指向不明引发的误判和隐藏观点遗漏等问题,提出一种基于评价对象情感角色模型的文本情感分类方法。该方法首先识别文本中的潜在评价对象,通过局部语义分析对潜在评价对象所在语句进行情感标注,确定潜在评价对象所在语句的正负极性,并定义其情感角色;然后,改进特征权值计算方法,将情感角色对应的倾向值融入模型特征空间中;最后,通过特征聚合对特征空间实现模型降维。实验结果表明,所提方法与提取强主观性情感项作为特征的情感分类方法相比,分类准确率约提高3.2%,可有效改善文本情感分类效果。 展开更多
关键词 文本情感分类 向量空间模型 局部语义分析 情感角色 特征聚合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部