提出一种基于RRV(rapidly-exploring random vine)的混合采样算法(HS-RRV),以解决空间机械臂在拥挤杂乱环境下进行装配操作时运动规划效率低下的问题。首先,提出同时在工作空间和构形空间采样的策略,且采样权重随着算法进程动态调节,从...提出一种基于RRV(rapidly-exploring random vine)的混合采样算法(HS-RRV),以解决空间机械臂在拥挤杂乱环境下进行装配操作时运动规划效率低下的问题。首先,提出同时在工作空间和构形空间采样的策略,且采样权重随着算法进程动态调节,从而能够在保证算法完备性的前提下充分利用工作空间信息缩小采样范围以提高算法规划效率。其次,在局部规划器设计中,利用分层二次最小二乘规划方法,考虑了机械臂运动学和动力学特性与约束,提高了所规划轨迹的可执行性。当算法陷入局部复杂区域时,利用桥测试和主成分分析法对局部空间类型进行辨识,从而获取更加高效的拓展方向。最后,对所提方法与现有方法在多种装配场景下进行对比仿真,结果表明本方法有更高的运行效率和规划成功率,以及较短的轨迹长度。展开更多
文摘提出一种基于RRV(rapidly-exploring random vine)的混合采样算法(HS-RRV),以解决空间机械臂在拥挤杂乱环境下进行装配操作时运动规划效率低下的问题。首先,提出同时在工作空间和构形空间采样的策略,且采样权重随着算法进程动态调节,从而能够在保证算法完备性的前提下充分利用工作空间信息缩小采样范围以提高算法规划效率。其次,在局部规划器设计中,利用分层二次最小二乘规划方法,考虑了机械臂运动学和动力学特性与约束,提高了所规划轨迹的可执行性。当算法陷入局部复杂区域时,利用桥测试和主成分分析法对局部空间类型进行辨识,从而获取更加高效的拓展方向。最后,对所提方法与现有方法在多种装配场景下进行对比仿真,结果表明本方法有更高的运行效率和规划成功率,以及较短的轨迹长度。