期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于局部边缘预测的空谱联合高光谱图像无损压缩
被引量:
1
1
作者
王柯俨
李云松
+2 位作者
宋娟
廖惠琳
吴宪云
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2017年第2期677-685,共9页
利用高光谱图像丰富的边缘特性和很强的谱间结构相似性,提出一种基于局部边缘预测的空谱联合高光谱图像无损压缩方法。该方法利用谱间最小方差算法的编码框架,在原有谱内、谱间预测模式的基础上,增加了第三种"无预测"的预测模...
利用高光谱图像丰富的边缘特性和很强的谱间结构相似性,提出一种基于局部边缘预测的空谱联合高光谱图像无损压缩方法。该方法利用谱间最小方差算法的编码框架,在原有谱内、谱间预测模式的基础上,增加了第三种"无预测"的预测模式,以更好地适应高光谱图像的相关特性。在谱内预测时,针对图像中普遍存在的局部斜边缘,将对角边缘检测引入到中值预测中,提出了改进的对角边缘预测算法。在谱间预测时,通过分析局部边缘存在时上下文的特点,提出简单有效的上下文选择策略,在此基础上,提出了基于局部边缘结构相似性的谱间预测算法,在上下文模板内自适应地选择最佳预测上下文进行谱间预测。实验结果表明,本文方法有效利用了图像的局部边缘特性,更好地去除了谱内和谱间的相关性,改善了预测性能,提高了无损压缩比。
展开更多
关键词
信息处理技术
高光谱图像
无损压缩
空谱联合
局部边缘预测
下载PDF
职称材料
题名
基于局部边缘预测的空谱联合高光谱图像无损压缩
被引量:
1
1
作者
王柯俨
李云松
宋娟
廖惠琳
吴宪云
机构
西安电子科技大学综合业务网国家重点实验室
西安电子科技大学软件学院
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2017年第2期677-685,共9页
基金
国家自然科学基金项目(61301291
61401324)
高等学校创新引智基地项目(B08038)
文摘
利用高光谱图像丰富的边缘特性和很强的谱间结构相似性,提出一种基于局部边缘预测的空谱联合高光谱图像无损压缩方法。该方法利用谱间最小方差算法的编码框架,在原有谱内、谱间预测模式的基础上,增加了第三种"无预测"的预测模式,以更好地适应高光谱图像的相关特性。在谱内预测时,针对图像中普遍存在的局部斜边缘,将对角边缘检测引入到中值预测中,提出了改进的对角边缘预测算法。在谱间预测时,通过分析局部边缘存在时上下文的特点,提出简单有效的上下文选择策略,在此基础上,提出了基于局部边缘结构相似性的谱间预测算法,在上下文模板内自适应地选择最佳预测上下文进行谱间预测。实验结果表明,本文方法有效利用了图像的局部边缘特性,更好地去除了谱内和谱间的相关性,改善了预测性能,提高了无损压缩比。
关键词
信息处理技术
高光谱图像
无损压缩
空谱联合
局部边缘预测
Keywords
Information processing
hyperspectral images
lossless compression
spatial-spectral
local edge based prediction
分类号
TP751.1 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于局部边缘预测的空谱联合高光谱图像无损压缩
王柯俨
李云松
宋娟
廖惠琳
吴宪云
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2017
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部