期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
局部迭代的快速K-means聚类算法 被引量:9
1
作者 李峰 李明祥 张宇敬 《计算机工程与应用》 CSCD 北大核心 2020年第13期63-71,共9页
为了解决K-means算法在聚类数量增多的情况下,因选择了不合适的中心初值而影响到聚类效果这一问题,提出了一种局部迭代的快速K-means聚类算法(PIFKM+−)。该算法在K-means聚类的基础上,不断寻找能够被分割的聚类簇和能够被删除的聚类簇,... 为了解决K-means算法在聚类数量增多的情况下,因选择了不合适的中心初值而影响到聚类效果这一问题,提出了一种局部迭代的快速K-means聚类算法(PIFKM+−)。该算法在K-means聚类的基础上,不断寻找能够被分割的聚类簇和能够被删除的聚类簇,并对受影响的局部数据进行重新聚类处理,降低了整个聚类更新的时间复杂度,提高了聚类的效果。PIFKM+−算法在面对聚类数量众多的情况下,具有能够快速更新聚类、对聚类中心初值不敏感、能够提高聚类精确度等优势。通过与K-means和K-means++两种算法的比较,在仿真数据集和真实数据集的综合实验下,验证了该算法的精确性、高效率性和可扩展性,同时实验结果的统计分析表明该算法在提高了聚类精确度的同时并没有损失太多的时间效率。 展开更多
关键词 K-MEANS算法 分割 删除 局部迭代聚类 邻居
下载PDF
一个K-均值文档聚类的改进算法
2
作者 吴景岚 刘燕 朱文兴 《闽江学院学报》 2004年第2期48-52,共5页
k均值算法是一个常用的局部搜索算法,它的主要缺陷是容易陷入局部极小,并且该局部极小解与全局最优解往往有很大的偏差。本文提出一个基于K-均值的迭代局部搜索文档聚类算法。该算法以k均值算法所得到的解作为初始解,从该初始解开始作... k均值算法是一个常用的局部搜索算法,它的主要缺陷是容易陷入局部极小,并且该局部极小解与全局最优解往往有很大的偏差。本文提出一个基于K-均值的迭代局部搜索文档聚类算法。该算法以k均值算法所得到的解作为初始解,从该初始解开始作局部搜索,在搜索过程中接受部分劣解。当解无法改进时,算法对所得到的局部极小解做适当强度的扰动后进行下一次的迭代,以跳出局部极小,从而拓展了搜索的范围。实验结果表明该算法对文档数据集聚类的正确性达99%以上。 展开更多
关键词 K-均值 局部搜索文档算法 局部极小解 全局最优解 数据库
下载PDF
一种新的图像超像素分割方法 被引量:11
3
作者 廖苗 李阳 +1 位作者 赵于前 刘毅志 《电子与信息学报》 EI CSCD 北大核心 2020年第2期364-370,共7页
针对现有超像素分割方法无法自动确定合适的超像素数目,以及难以有效贴合图像目标边界等问题,该文提出一种新的利用局部信息进行多层级简单线性迭代聚类的图像超像素分割方法。首先,运用基于局部信息的简单线性迭代聚类(LI-SLIC)对原始... 针对现有超像素分割方法无法自动确定合适的超像素数目,以及难以有效贴合图像目标边界等问题,该文提出一种新的利用局部信息进行多层级简单线性迭代聚类的图像超像素分割方法。首先,运用基于局部信息的简单线性迭代聚类(LI-SLIC)对原始图像进行超像素初分割,然后,根据超像素的色彩标准差对其进行自适应多层级迭代分割,直至每个超像素块的色彩标准差小于预设阈值,最后,利用相邻超像素间的色彩差异对过分割的超像素进行合并。为验证方法的有效性,该文采用Berkeley, Pascal VOC和3Dircadb公共数据库作为实验数据集,并与其他多种超像素分割方法进行了比较。实验结果表明,该文提出的超像素分割方法能更精确贴合图像目标边界,有效抑制图像过分割和欠分割。 展开更多
关键词 图像处理 超像素 局部信息简单线性 多层级分割 超像素合并
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部