This paper considers an ant colony optimization algorithm based on AND/OR graph for integrated process planning and scheduling(IPPS). Generally, the process planning and scheduling are studied separately. Due to the c...This paper considers an ant colony optimization algorithm based on AND/OR graph for integrated process planning and scheduling(IPPS). Generally, the process planning and scheduling are studied separately. Due to the complexity of manufacturing system, IPPS combining both process planning and scheduling can depict the real situation of a manufacturing system. The IPPS is represented on AND/OR graph consisting of nodes, and undirected and directed arcs. The nodes denote operations of jobs, and undirected/directed arcs denote possible visiting path among the nodes. Ant colony goes through the necessary nodes on the graph from the starting node to the end node to obtain the optimal solution with the objective of minimizing makespan. In order to avoid local convergence and low convergence, some improved strategy is incorporated in the standard ant colony optimization algorithm. Extensive computational experiments are carried out to study the influence of various parameters on the system performance.展开更多
基金Supported by the Fundamental Research Funds for the Central Universities(13MS100)the Hebei Province Research Foundation of Natural Science(E2011502024)the National Natural Science Foundation of China(51177046)
文摘This paper considers an ant colony optimization algorithm based on AND/OR graph for integrated process planning and scheduling(IPPS). Generally, the process planning and scheduling are studied separately. Due to the complexity of manufacturing system, IPPS combining both process planning and scheduling can depict the real situation of a manufacturing system. The IPPS is represented on AND/OR graph consisting of nodes, and undirected and directed arcs. The nodes denote operations of jobs, and undirected/directed arcs denote possible visiting path among the nodes. Ant colony goes through the necessary nodes on the graph from the starting node to the end node to obtain the optimal solution with the objective of minimizing makespan. In order to avoid local convergence and low convergence, some improved strategy is incorporated in the standard ant colony optimization algorithm. Extensive computational experiments are carried out to study the influence of various parameters on the system performance.