The wavelet transform (WT) method has been employed to decompose an original geophysical signal into a series of components containing different information about reservoir features such as pore fluids, lithology, a...The wavelet transform (WT) method has been employed to decompose an original geophysical signal into a series of components containing different information about reservoir features such as pore fluids, lithology, and pore structure. We have developed a new method based on WT energy spectra analysis, by which the signal component reflecting the reservoir fluid property is extracted. We have successfully processed real log data from an oil field in central China using this method. The results of the reservoir fluid identification agree with the results of well tests.展开更多
In order to obtain effective parameters for complex sand reservoirs,a log evaluation method for relevant reservoir parameters is established based on an analysis in the gas-bearing sandstone with high porosity and low...In order to obtain effective parameters for complex sand reservoirs,a log evaluation method for relevant reservoir parameters is established based on an analysis in the gas-bearing sandstone with high porosity and low permeability,low porosity and permeability and on various characteristics of log responses to reservoir lithologies and physical properties in the Neopleozoic sand reservoir of the Ordos basin.This log evaluation method covers the Cook method that is used to evaluate the porosity and oiliness in high porosity and low permeability reservoirs and another method in which the mineral content,derived from geochemical logs,is used to identify formation lithologies.Some areas have high calcium and low silt content,not uniformly distributed,the results of which show up in the complex formation lithologies and conventional log responses with great deviation.The reliability of the method is verified by comparison with conventional log data and core analyses.The calculation results coincide with the core analytical data and gas tests,which indicate that this log evaluation method is available,provides novel ideas for study of similar complex reservoir lithologies and has some reference value.展开更多
The dynamic failure mode and energybased identification method for a counter-bedding rock slope with weak intercalated layers are discussed in this paper using large scale shaking table test and the Hilbert-Huang Tran...The dynamic failure mode and energybased identification method for a counter-bedding rock slope with weak intercalated layers are discussed in this paper using large scale shaking table test and the Hilbert-Huang Transform(HHT) marginal spectrum.The results show that variations in the peak values of marginal spectra can clearly indicate the process of dynamic damage development inside the model slope.The identification results of marginal spectra closely coincide with the monitoring results of slope face displacement in the test.When subjected to the earthquake excitation with 0.1 g and 0.2 g amplitudes,no seismic damage is observed in the model slope,while the peak values of marginal spectra increase linearly with increasing slope height.In the case of 0.3 g seismic excitation,dynamic damage occurs near the slope crest and some rock blocks fall off the slope crest.When the seismic excitation reaches 0.4 g,the dynamic damage inside the model slope extends to the part with relative height of 0.295-0.6,and minor horizontal cracks occur in the middle part of the model slope.When the seismic excitation reaches 0.6 g,the damage further extends to the slope toe,and the damage inside the model slope extends to the part with relative height below 0.295,and the upper part(near the relative height of 0.8) slides outwards.Longitudinal fissures appear in the slope face,which connect with horizontal cracks,the weak intercalated layers at middle slope height are extruded out and the slope crest breaks up.The marginal spectrum identification results demonstrate that the dynamic damage near the slope face is minor as compared with that inside the model slope.The dynamic failure mode of counter-bedding rock slope with weak intercalated layers is extrusion and sliding at the middle rock strata.The research results of this paper are meaningful for the further understanding of the dynamic failure mode of counter-bedding rock slope with weak intercalated layers.展开更多
Avalanches are one of the most natural hazard in the mountain areas and therefore, identification of avalanche hazard is necessary for planning future development activities. The study area falls under the internation...Avalanches are one of the most natural hazard in the mountain areas and therefore, identification of avalanche hazard is necessary for planning future development activities. The study area falls under the international boundary region which generally covered by the snow(38%) on high altitude regions of the western part of Himalayas. Avalanches are triggered in study area during snowfall resulting in loss of human life, property and moreover the transportation and communication affected by the debris which ultimately delays the relief measures. Therefore in this study three major causative parameters i.e terrain, ground cover and meteorological have been incorporated for the identification of avalanche hazard zones(AHZ) by integrating Analytical Hierarchical Process(AHP) method in Geographical Information System(GIS). In the first part of study, avalanche sites have been identified by the criteria related to terrain(slope, aspect and curvature) and ground cover. Weights and ratings to these causative factors and their cumulative effects have been assigned on the basis of experience and knowledge of field. In the second part of the study, single point interpolation and Inverse Distance Weighted(IDW) method has been employed as only one weather station falls in study area. Accordingly, it has been performed to generate the meteorological parameter maps(viz. air temperature and relative humidity) from the field observatories and Automatic Weather Stations(AWS) located at Baaj OP in Uri sector. Finally, the meteorological parameter maps were superimposed on the terrain-based avalanche hazard thematic layers to identify the dynamic avalanche hazard sites. Conventional weighted approach and Analytical Hierarchical Process(AHP) method have been implemented for the identification of AHZ that shows approximately 55% area under maximum hazard zone. Further, the results were validated by overlapping the existing registered avalanche sites. The sites were identified through field survey and avalanche data card followed by its delineation from the toposheet(1:50,000 scale). Interestingly study found that 28% area under moderate and maximum AHZ correlated well with registered avalanche sites when they were overlapped. The accuracy for such works can be increased by field survey under favorable weather condition and by adding data from more number of AWS for predicting avalanche hazards in mountainous regions.展开更多
Accurate and objective rust defect assessment is required to maintain good quality steel bridge coating surfaces and make a decision whether a bridge shall completely or partially be repainted. For more objective rust...Accurate and objective rust defect assessment is required to maintain good quality steel bridge coating surfaces and make a decision whether a bridge shall completely or partially be repainted. For more objective rust defect recognition, digital image recognition methods have been developed for the past few years and they are expected to replace or complement conventional painting inspection methods. Efficient image processing methods are also essential for the successful implementation of steel bridge coating warranty contracting where the owner, usually a state agency, and the contractor inspect steel bridge coating conditions regularly and decide whether additional maintenance actions are needed based on the processed data. There are two approaches to develop automated rust defect recognition methods: applying a statistical method or an artificial intelligence technique. This paper presents the application of previously developed image processing methods for defect evaluations on a bridge coating surface and discusses their limitations under three environmental conditions which are often encountered while acquiring digital images.展开更多
In this study, we first define ecological technologies and the need for identification technology, and we then examine all the present methods of identification technology: Delphi method, Technology Road Mapping Meth...In this study, we first define ecological technologies and the need for identification technology, and we then examine all the present methods of identification technology: Delphi method, Technology Road Mapping Method, Analytic Hierarchy Process, Patentometric method and the text mining method. Among these methods, the combination of Delphi + Analytic Hierarchy Process incorporates ecological technologies into social and economic systems for a systematic identification, and is able to build an index system for an identification model of ecological technologies, identifying technical features, technical level and performance, and economic, social and ecological benefits. Patentometric method presents an objective perspective for identification, based on the characteristics and the internal development logic of ecological technologies. We find that the Delphi + Analytic Hierarchy Process and Patentometric method are the best choices for identification of ecological technologies, because both combine the advantages of qualitative and quantitative identification.展开更多
Discriminating internal layers by radio echo sounding is important in analyzing the thickness and ice deposits in the Antarctic ice sheet.The signal processing method of synthesis aperture radar(SAR)has been widely us...Discriminating internal layers by radio echo sounding is important in analyzing the thickness and ice deposits in the Antarctic ice sheet.The signal processing method of synthesis aperture radar(SAR)has been widely used for improving the signal to noise ratio(SNR)and discriminating internal layers by radio echo sounding data of ice sheets.This method is not efficient when we use edge detection operators to obtain accurate information of the layers,especially the ice-bed interface.This paper presents a new image processing method via a combined robust principal component analysis-total variation(RPCA-TV)approach for discriminating internal layers of ice sheets by radio echo sounding data.The RPCA-based method is adopted to project the high-dimensional observations to low-dimensional subspace structure to accelerate the operation of the TV-based method,which is used to discriminate the internal layers.The efficiency of the presented method has been tested on simulation data and the dataset of the Institute of Electronics,Chinese Academy of Sciences,collected during CHINARE 28.The results show that the new method is more efficient than the previous method in discriminating internal layers of ice sheets by radio echo sounding data.展开更多
The holistic characterization and quality control of all the medicinal herbs of proprietary Chinese medicines(PCMs)are of great significance to ensure their safety,efficacy,and consistency.Thin-layer chromatography(TL...The holistic characterization and quality control of all the medicinal herbs of proprietary Chinese medicines(PCMs)are of great significance to ensure their safety,efficacy,and consistency.Thin-layer chromatography(TLC),a simple and classic approach for qualitatively characterizing and examining quality markers of natural products,has been widely used in the characterization and quality control of traditional Chinese medicines.Zaoren Anshen(ZRAS)capsule,prepared from three medicinal herbs of fried Ziziphi Spinosae Semen,Salvia Miltiorrhiza Radix et Rhizoma,and vinegar-processed Schisandrae Chinensis Fructus,is a famous PCM in China for the treatment of insomnia,amnesia,and dizziness in clinical practice.However,no effective method is available so far for simultaneous identification and examination of all the three medicinal herbs of ZRAS capsule.In the present study,we developed a TLC method via twice-development and visualization by UV light or chromogenic agent,which could be used for simultaneous qualitative identification of all the three medicinal herbs of ZRAS capsule in one plate.Moreover,the sample preparation method was optimized.The developed TLC method was rapid,simple,low-cost,and effective,and thus it could be used for quality control of ZRAS capsule.展开更多
基金This research is sponsored by Nation Natural Science Foundation of China (No.50404001 and No.50374048).
文摘The wavelet transform (WT) method has been employed to decompose an original geophysical signal into a series of components containing different information about reservoir features such as pore fluids, lithology, and pore structure. We have developed a new method based on WT energy spectra analysis, by which the signal component reflecting the reservoir fluid property is extracted. We have successfully processed real log data from an oil field in central China using this method. The results of the reservoir fluid identification agree with the results of well tests.
基金supported by the Program for New Century Excellent Talents in Universities
文摘In order to obtain effective parameters for complex sand reservoirs,a log evaluation method for relevant reservoir parameters is established based on an analysis in the gas-bearing sandstone with high porosity and low permeability,low porosity and permeability and on various characteristics of log responses to reservoir lithologies and physical properties in the Neopleozoic sand reservoir of the Ordos basin.This log evaluation method covers the Cook method that is used to evaluate the porosity and oiliness in high porosity and low permeability reservoirs and another method in which the mineral content,derived from geochemical logs,is used to identify formation lithologies.Some areas have high calcium and low silt content,not uniformly distributed,the results of which show up in the complex formation lithologies and conventional log responses with great deviation.The reliability of the method is verified by comparison with conventional log data and core analyses.The calculation results coincide with the core analytical data and gas tests,which indicate that this log evaluation method is available,provides novel ideas for study of similar complex reservoir lithologies and has some reference value.
基金financially supported by the National Basic Research Program (973 Program) of the Ministry of Science and Technology of the People's Republic of China (Grant No.2011CB013605)the Research Program of Ministry of Transport of the People's Republic of China (Grant No.2013318800020)
文摘The dynamic failure mode and energybased identification method for a counter-bedding rock slope with weak intercalated layers are discussed in this paper using large scale shaking table test and the Hilbert-Huang Transform(HHT) marginal spectrum.The results show that variations in the peak values of marginal spectra can clearly indicate the process of dynamic damage development inside the model slope.The identification results of marginal spectra closely coincide with the monitoring results of slope face displacement in the test.When subjected to the earthquake excitation with 0.1 g and 0.2 g amplitudes,no seismic damage is observed in the model slope,while the peak values of marginal spectra increase linearly with increasing slope height.In the case of 0.3 g seismic excitation,dynamic damage occurs near the slope crest and some rock blocks fall off the slope crest.When the seismic excitation reaches 0.4 g,the dynamic damage inside the model slope extends to the part with relative height of 0.295-0.6,and minor horizontal cracks occur in the middle part of the model slope.When the seismic excitation reaches 0.6 g,the damage further extends to the slope toe,and the damage inside the model slope extends to the part with relative height below 0.295,and the upper part(near the relative height of 0.8) slides outwards.Longitudinal fissures appear in the slope face,which connect with horizontal cracks,the weak intercalated layers at middle slope height are extruded out and the slope crest breaks up.The marginal spectrum identification results demonstrate that the dynamic damage near the slope face is minor as compared with that inside the model slope.The dynamic failure mode of counter-bedding rock slope with weak intercalated layers is extrusion and sliding at the middle rock strata.The research results of this paper are meaningful for the further understanding of the dynamic failure mode of counter-bedding rock slope with weak intercalated layers.
文摘Avalanches are one of the most natural hazard in the mountain areas and therefore, identification of avalanche hazard is necessary for planning future development activities. The study area falls under the international boundary region which generally covered by the snow(38%) on high altitude regions of the western part of Himalayas. Avalanches are triggered in study area during snowfall resulting in loss of human life, property and moreover the transportation and communication affected by the debris which ultimately delays the relief measures. Therefore in this study three major causative parameters i.e terrain, ground cover and meteorological have been incorporated for the identification of avalanche hazard zones(AHZ) by integrating Analytical Hierarchical Process(AHP) method in Geographical Information System(GIS). In the first part of study, avalanche sites have been identified by the criteria related to terrain(slope, aspect and curvature) and ground cover. Weights and ratings to these causative factors and their cumulative effects have been assigned on the basis of experience and knowledge of field. In the second part of the study, single point interpolation and Inverse Distance Weighted(IDW) method has been employed as only one weather station falls in study area. Accordingly, it has been performed to generate the meteorological parameter maps(viz. air temperature and relative humidity) from the field observatories and Automatic Weather Stations(AWS) located at Baaj OP in Uri sector. Finally, the meteorological parameter maps were superimposed on the terrain-based avalanche hazard thematic layers to identify the dynamic avalanche hazard sites. Conventional weighted approach and Analytical Hierarchical Process(AHP) method have been implemented for the identification of AHZ that shows approximately 55% area under maximum hazard zone. Further, the results were validated by overlapping the existing registered avalanche sites. The sites were identified through field survey and avalanche data card followed by its delineation from the toposheet(1:50,000 scale). Interestingly study found that 28% area under moderate and maximum AHZ correlated well with registered avalanche sites when they were overlapped. The accuracy for such works can be increased by field survey under favorable weather condition and by adding data from more number of AWS for predicting avalanche hazards in mountainous regions.
文摘Accurate and objective rust defect assessment is required to maintain good quality steel bridge coating surfaces and make a decision whether a bridge shall completely or partially be repainted. For more objective rust defect recognition, digital image recognition methods have been developed for the past few years and they are expected to replace or complement conventional painting inspection methods. Efficient image processing methods are also essential for the successful implementation of steel bridge coating warranty contracting where the owner, usually a state agency, and the contractor inspect steel bridge coating conditions regularly and decide whether additional maintenance actions are needed based on the processed data. There are two approaches to develop automated rust defect recognition methods: applying a statistical method or an artificial intelligence technique. This paper presents the application of previously developed image processing methods for defect evaluations on a bridge coating surface and discusses their limitations under three environmental conditions which are often encountered while acquiring digital images.
基金National Key Research and Development Program(2016YFC0503703)
文摘In this study, we first define ecological technologies and the need for identification technology, and we then examine all the present methods of identification technology: Delphi method, Technology Road Mapping Method, Analytic Hierarchy Process, Patentometric method and the text mining method. Among these methods, the combination of Delphi + Analytic Hierarchy Process incorporates ecological technologies into social and economic systems for a systematic identification, and is able to build an index system for an identification model of ecological technologies, identifying technical features, technical level and performance, and economic, social and ecological benefits. Patentometric method presents an objective perspective for identification, based on the characteristics and the internal development logic of ecological technologies. We find that the Delphi + Analytic Hierarchy Process and Patentometric method are the best choices for identification of ecological technologies, because both combine the advantages of qualitative and quantitative identification.
基金supported by the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2011AA040202)the National Natural Science Foundation of China(Grant No.40976114)
文摘Discriminating internal layers by radio echo sounding is important in analyzing the thickness and ice deposits in the Antarctic ice sheet.The signal processing method of synthesis aperture radar(SAR)has been widely used for improving the signal to noise ratio(SNR)and discriminating internal layers by radio echo sounding data of ice sheets.This method is not efficient when we use edge detection operators to obtain accurate information of the layers,especially the ice-bed interface.This paper presents a new image processing method via a combined robust principal component analysis-total variation(RPCA-TV)approach for discriminating internal layers of ice sheets by radio echo sounding data.The RPCA-based method is adopted to project the high-dimensional observations to low-dimensional subspace structure to accelerate the operation of the TV-based method,which is used to discriminate the internal layers.The efficiency of the presented method has been tested on simulation data and the dataset of the Institute of Electronics,Chinese Academy of Sciences,collected during CHINARE 28.The results show that the new method is more efficient than the previous method in discriminating internal layers of ice sheets by radio echo sounding data.
基金National Key Research and Development Program of China(Grant No.2018YFC1707300)。
文摘The holistic characterization and quality control of all the medicinal herbs of proprietary Chinese medicines(PCMs)are of great significance to ensure their safety,efficacy,and consistency.Thin-layer chromatography(TLC),a simple and classic approach for qualitatively characterizing and examining quality markers of natural products,has been widely used in the characterization and quality control of traditional Chinese medicines.Zaoren Anshen(ZRAS)capsule,prepared from three medicinal herbs of fried Ziziphi Spinosae Semen,Salvia Miltiorrhiza Radix et Rhizoma,and vinegar-processed Schisandrae Chinensis Fructus,is a famous PCM in China for the treatment of insomnia,amnesia,and dizziness in clinical practice.However,no effective method is available so far for simultaneous identification and examination of all the three medicinal herbs of ZRAS capsule.In the present study,we developed a TLC method via twice-development and visualization by UV light or chromogenic agent,which could be used for simultaneous qualitative identification of all the three medicinal herbs of ZRAS capsule in one plate.Moreover,the sample preparation method was optimized.The developed TLC method was rapid,simple,low-cost,and effective,and thus it could be used for quality control of ZRAS capsule.