Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with...Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.展开更多
In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical...In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical seismic structure is closely related to oil and gas-bearing reservoir, so it is very useful for a geologist or a geophysicist to precisely interpret the oil-bearing layers from the seismic data. This technology can be applied to any exploration or production stage. The new method has been tested on a series of exploratory or development wells and proved to be reliable in China. Hydrocarbon-detection with this new method for 39 exploration wells on 25 structures indi- cates a success ratio of over 80 percent. The new method of hydrocarbon prediction can be applied for: (1) depositional environment of reservoirs with marine fades, delta, or non-marine fades (including fluvial facies, lacustrine fades); (2) sedimentary rocks of reservoirs that are non-marine clastic rocks and carbonate rock; and (3) burial depths range from 300 m to 7000 m, and the minimum thickness of these reservoirs is over 8 m (main frequency is about 50 Hz).展开更多
Based on observed data from Tanggu District in Tianjin, a back-propagation neural network (BPNN) model was introduced to predict possible land subsidence due to exploitation of groundwater. According to model estimati...Based on observed data from Tanggu District in Tianjin, a back-propagation neural network (BPNN) model was introduced to predict possible land subsidence due to exploitation of groundwater. According to model estimation under various hypothetical extraction scenarios, patterns of land subsidence at Tanggu District were studied and discussed.The predicted average background land subsidence rate of Tanggu is 9.47 mm/a.The significance of contribution of aquifers to land subsidence descends in order of units Ⅳ,Ⅲ,Ⅴ,Ⅱ.Land subsidence tends to deteriorate with the increase in total extraction rate.展开更多
According to the characteristics of the methane hydrate condensing and accumulating methane, authors put forward a new technique thought way to prevent the accident of coal and gas outburst by urging the methane in th...According to the characteristics of the methane hydrate condensing and accumulating methane, authors put forward a new technique thought way to prevent the accident of coal and gas outburst by urging the methane in the coal seams to form hydrate. The paper analyzes the feasibility of forming the methane hydrate in the coal seam from the several sides, such as, temperature,pressure, and gas components, and the primary trial results indicate the problems should be settled before the industrialization appliance realized.展开更多
To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were dev...To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable.展开更多
Exploitation technology of pressure relief coalbed methane in vertical surface wells is a new method for exploration of gas and coalbed methane exploitation in mining areas with high concentrations of gas, where tecto...Exploitation technology of pressure relief coalbed methane in vertical surface wells is a new method for exploration of gas and coalbed methane exploitation in mining areas with high concentrations of gas, where tectonic coal developed. Studies on vertical surface well technology in the Huainan Coal Mining area play a role in demonstration in the use of clean, new energy resources, preventing and reducing coal mine gas accidents and protecting the environment. Based on the practice of gas drainage engineering of pressure relief coalbed methane in vertical surface wells and combined with relative geological and exploration en- gineering theories, the design principles of design and structure of wells of pressure relief coalbed methane in vertical surface wells are studied. The effects of extraction and their causes are discussed and the impact of geological conditions on gas production of the vertical surface wells are analyzed. The results indicate that in mining areas with high concentrations of gas, where tectonic coal developed, a success rate of pressure relief coalbed methane in surface vertical well is high and single well production usually great. But deformation due to coal exploitation could damage boreholes and cause breaks in the connection between aquifers and bore-holes, which could induce a decrease, even a complete halt in gas production of a single well. The design of well site location and wellbore configuration are the key for technology. The development of the geological conditions for coalbed methane have a significant effect on gas production of coalbed methane wells.展开更多
The two dimensional problem of simply supported laminated isotropic strips with viscoelastic interfaces and under static loading was studied. Exact solution was derived based on the exact elasticity equation and the K...The two dimensional problem of simply supported laminated isotropic strips with viscoelastic interfaces and under static loading was studied. Exact solution was derived based on the exact elasticity equation and the Kelvin-Voigt viscoelastic interfacial model. Numerical computations were performed for a strip consisting of three layers of equal thickness. Results indicated that the response of the laminate was very sensitive to the presence of viscoelastic interfaces.展开更多
Semi-analytical elasticity solutions for bending of angle-ply laminates in cylindrical bending are presented using the state-space-based differential quadrature method (SSDQM). Partial differential state equation is d...Semi-analytical elasticity solutions for bending of angle-ply laminates in cylindrical bending are presented using the state-space-based differential quadrature method (SSDQM). Partial differential state equation is derived from the basic equations of elasticity based on the state space concept. Then, the differential quadrature (DQ) technique is introduced to discretize the longitu- dinal domain of the plate so that a series of ordinary differential state equations are obtained at the discrete points. Meanwhile, the edge constrained conditions are handled directly using the stress and displacement components without the Saint-Venant principle. The thickness domain is solved analytically based on the state space formalism along with the continuity conditions at interfaces. The present method is validated by comparing the results to the exact solutions of Pagano’s problem. Numerical results for fully clamped thick laminates are presented, and the influences of ply angle on stress distributions are discussed.展开更多
By means of the numerical simulation software ANSYS, the activation regularity of coal floor faults caused by mining is simulated. The results indicate that the variation in horizontal, vertical and shear stresses, as...By means of the numerical simulation software ANSYS, the activation regularity of coal floor faults caused by mining is simulated. The results indicate that the variation in horizontal, vertical and shear stresses, as well as the horizontal and vertical displacements in the upper and the lower fault blocks at the workface are almost identical. Influ- enced by mining of the floor rock, there are stress releasing and stress rising areas at the upper part and at the footwall of the fault. The distribution of stress is influenced by the fault so that the stress isolines are staggered by the fault face and the stress is focused on the rock seam around the two ends of the fault. But the influence in fault activation on the upper or the lower fault blocks of the workface is markedly different. When the workface is on the footwall of the fault, there is a horizontal tension stress area on the upper part of the fault; when the workface is on the upper part of the fault, it has a horizontal compressive stress area on the lower fault block. When the workface is at the lower fault block, the maximum vertical displacement is 5 times larger then when the workface is on the upper fault block, which greatly in- creases the chance of a fatal inrush of water from the coal floor.展开更多
The hardening curve for sheet metal can be determined from the load-displacement curve of tensile specimen with rectangular cross-section. Therefore,uniaxial compression test on cylinder specimen made from laminated s...The hardening curve for sheet metal can be determined from the load-displacement curve of tensile specimen with rectangular cross-section. Therefore,uniaxial compression test on cylinder specimen made from laminated sample is put forward. Considering the influence of anisotropy on hardening properties and the stress state in popular forming process,plane strain compression test on cubic specimen made from laminated sample was advanced. Results show that the deformation range of hardening curves obtained from the presented methods is wide,which meets the need for the application in sheet metal forming processes. In view of the characteristics of methods presented in the paper and the stress strain state of various forming processes,the adaptability of the two methods presented in this paper is given.展开更多
No.4326 super-wide panel of Wangzhuang Coal Mine ( in which the fully-mechanized top-coal caving longwall mining method was used) was monitored for dynamic characteristic of surface movement. The dynamic surface movem...No.4326 super-wide panel of Wangzhuang Coal Mine ( in which the fully-mechanized top-coal caving longwall mining method was used) was monitored for dynamic characteristic of surface movement. The dynamic surface movement in and after mining was predicted by using the Mining Subsidence Prediction System. The results indicate that after mining, the surface above the super-wide panel reaches a state of full subsidence, making the No.309 national highway above the panel be located on the flat bottom of the subsidence basin so that the influence of mining activity in both sides of 4326 panel on the national highway is the smallest.展开更多
On the basis of the analysis of coal bed gas pressure in deep mine, and the coal bed permeability ( k ) and the characteristic of adsorption parameter ( b ) changing with temperature, the author puts forward a new cal...On the basis of the analysis of coal bed gas pressure in deep mine, and the coal bed permeability ( k ) and the characteristic of adsorption parameter ( b ) changing with temperature, the author puts forward a new calculating method of gas content in coal seam influenced by in situ stress grads and ground temperature. At the same time, the contrast of the measuring results of coal bed gas pressure with the computing results of coal bed gas pressure and gas content in coal seam in theory indicate that the computing method can well reflect the authenticity of gas content in coal seam,and will further perfect the computing method of gas content in coal seam in theory,and have important value in theory on analyzing gas content in coal seam and forecasting distribution law of gas content in coal seam in deep mine.展开更多
Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc- tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression a...Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc- tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression analysis (MVRA) were developed to predict deformation modulus based on data obtained from dilatometer tests carried out in Bakhtiary dam site and additional data collected from longwall coal mines. Models inputs were considered to be rock quality designation, overburden height, weathering, unconfined compressive strength, bedding inclination to core axis, joint roughness coefficient and fill thickness. To control the models performance, calculating indices such as root mean square error (RMSE), variance account for (VAF) and determination coefficient (R^2) were used. The MFS results show the significant prediction accuracy along with high performance compared to MVRA results. Finally, the sensitivity analysis of MFS results shows that the most and the least effective parameters on deformation modulus are weatherin~ and overburden height, respectively.展开更多
According to the special requirements of secondary mining of resources in gateway-and-pillar goal in extra-thick seams of Shanxi, this paper presents a technical proposal of back stoping from level floors. Numerical s...According to the special requirements of secondary mining of resources in gateway-and-pillar goal in extra-thick seams of Shanxi, this paper presents a technical proposal of back stoping from level floors. Numerical simulation and theoretical analysis are ccsed to investigate the compaction characteristics of cavities under stress as well as an appropriate mining height of the primary-mining layer based on dif- ferent mining widths and pillar widths. For Yangjian coal mine, the mining thickness of the first seam during back stoping from level floor is determined to be 3 m, which meets the relevant requirements. Gateway-and-pillar goaf of a single layer has a range of influence of 9 m vertically. If gateway-and-pillar goaf occurs both in 9-1 and 9-5 layers, the range is extended to within 11.2 m. When the mining width of a gateway is less than 2 m or larger than 5 m, the gateway-and-pillar goal in the upper layer of the primary-mining seam can be filled in and compacted after stoping. When the working face is 2 m away from the gateway and pillar before entering into it and after passing through it, the coal body under the gateway and pillar is subjected to relatively high stress. During mining of the upper layer, moreover, the working face should interlock the goaf in primary-mining layer for 20 m.展开更多
In order to study the dynamic action and physical effects of coal seams and gas, a simulation system for this dynamic action was developed and a physical model built in our laboratory. Using this newly built model, th...In order to study the dynamic action and physical effects of coal seams and gas, a simulation system for this dynamic action was developed and a physical model built in our laboratory. Using this newly built model, the volume of coal outbursts and the temperature during the outburst process were studied. The results show that: l) for coal seams with similar structure and com- ponents, two factors, i.e., gas pressure and ground stress affect the volume of coal outbursts, with gas pressure being the more im- portant of the two and 2) the changes in coal temperature, both its increase and decrease, are affected by ground stress and gas pressure, it is a process of change. Preliminary tests show that the system can simulate the dynamic interaction of coal and gas, which is helpful for studying the dynamic mechanism of solid-gas coupling of gas and coal.展开更多
In order to improve the efficiency of gas drainage before and during longwall extraction,a waterjet rotary cutting system has been developed for in-seam cross panel methane drainage.The purpose of the water rotary cut...In order to improve the efficiency of gas drainage before and during longwall extraction,a waterjet rotary cutting system has been developed for in-seam cross panel methane drainage.The purpose of the water rotary cutting system developed was to create artificial fractures along the gas drainage boreholes.During the design of the system,it was perceived that the nozzle geometry is one of the key factors,affecting cutting capacity.Therefore,we studied the structural and geometric parameters of the nozzle and optimized its performance during laboratory tests and numerical simulation.Underground trials conducted in a coal mine,indicate that production of gas drainage before and after cutting significantly increased by up to three times.The advantages of waterjet assisted gas drainage method has been identified as:1) increasing gas drainage efficiency,2) a possible development of a gas drainage fractured network within coal seams associated with panel extraction,and 3) reducing the risk of exceeding gas limits during longwalling.展开更多
This paper suggested to reformulate cylindrical deep drawing parameters with dimensionless form. A diagram, in which a feasible zone is drawn to bound both the maximal allowable tension and compression stress during t...This paper suggested to reformulate cylindrical deep drawing parameters with dimensionless form. A diagram, in which a feasible zone is drawn to bound both the maximal allowable tension and compression stress during the deep drawing process, was established. Since it is presented in a dimensionless form, it may be applied for both conventional and micro deep drawing. Cylindrical cup deep drawing was taken as an example to show the dimensionless process design method. In addition, the size effects should be taken into account. Two kinds of size effects on micro deep drawing were investigated, which can be explained by surface layer model and strain gradient model. Numerical simulations were carried out to compare the strain distribution with or without consideration of size effect.展开更多
In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fab...In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fabrication and annealing treatment,the microstructural evolution,phase constitution,microhardness,and bonding strength were investigated on the bonding interface zone of GW55/ZG21 laminated composites.The bonding interface zone of GW55/ZG21 laminated composites comprises a lot of Mg3(Y,Gd)2Zn3 particles along the bonding interface,some rod Mg24(Y,Gd)5 phases on GW55 side,and a precipitation free zone(PFZ)on ZG21 side.After annealing treatment,Mg3(Y,Gd)2Zn3 particles along the bonding interface increase, rod Mg24(Y,Gd)5 phases on GW55 side decrease,and PFZ is broadened.Meanwhile,the hardness on the bonding interface zone decreases and the bonding strength increases from 126 MPa to 162 MPa.展开更多
For a low permeability single coal seam prone to gas outbursts, pre-drainage of gas is difficult and inefficient, seriously restricting the safety and efficiency of production. Radical measures of increasing gas extra...For a low permeability single coal seam prone to gas outbursts, pre-drainage of gas is difficult and inefficient, seriously restricting the safety and efficiency of production. Radical measures of increasing gas extraction efficiency are pressure relief and infrared antireflection. We have analyzed the effect of mining conditions and the regularity of mine pressure distribution in front of the working face of a major coal mine of the Jiaozuo Industrial (Group) Co. as our test area, studied the width of the depressurization zone in slice mining and analyzed gas efficiency and fast drainage in the advanced stress relaxation zone. On that basis, we further investigated and practiced the exploitation technology of shallow drilling, fan dril- ling and grid shape drilling at the working face. Practice and our results show that the stress relaxation zone is the ideal region for quick and efficient extraction of gas. By means of an integrated extraction technology, the amount of gas emitted into the zone was greatly reduced, while the risk of dangerous outbursts of coal and gas was lowered markedly. This exploration provides a new way to control for gas in working faces of coal mines with low permeability and risk of gas outbursts of single coal seams in the Jiaozuo mining area.展开更多
文摘Surface notches lower the stiffness of laminated strips, so they lower the buckling loads of the laminated strips, too. In this paper a new method is proposed to predict the buckling loads of the laminated strips with a surface notch. The theoretical and experimental results show that the buckling loads decrease as the depth or width of the surface notches increase; when the stacking sequence of the laminated strips is [0°/0°/+ θ/-θ/0°/0°/+θ/-θ] s , the buckling load decrease as θ increases. It proves that the method is reliable and significant.
基金Mainly presented at the 6-th international meeting of acoustics in Aug. 2003, and The 1999 SPE Asia Pacific Oil and GasConference and Exhibition held in Jakarta, Indonesia, 20-22 April 1999, SPE 54274.
文摘In this paper, a new concept called numerical structure of seismic data is introduced and the difference between numerical structure and numerical value of seismic data is explained. Our study shows that the numerical seismic structure is closely related to oil and gas-bearing reservoir, so it is very useful for a geologist or a geophysicist to precisely interpret the oil-bearing layers from the seismic data. This technology can be applied to any exploration or production stage. The new method has been tested on a series of exploratory or development wells and proved to be reliable in China. Hydrocarbon-detection with this new method for 39 exploration wells on 25 structures indi- cates a success ratio of over 80 percent. The new method of hydrocarbon prediction can be applied for: (1) depositional environment of reservoirs with marine fades, delta, or non-marine fades (including fluvial facies, lacustrine fades); (2) sedimentary rocks of reservoirs that are non-marine clastic rocks and carbonate rock; and (3) burial depths range from 300 m to 7000 m, and the minimum thickness of these reservoirs is over 8 m (main frequency is about 50 Hz).
基金Supported by Tianjin Land Subsidence Controlling Office(No.kJ/095).
文摘Based on observed data from Tanggu District in Tianjin, a back-propagation neural network (BPNN) model was introduced to predict possible land subsidence due to exploitation of groundwater. According to model estimation under various hypothetical extraction scenarios, patterns of land subsidence at Tanggu District were studied and discussed.The predicted average background land subsidence rate of Tanggu is 9.47 mm/a.The significance of contribution of aquifers to land subsidence descends in order of units Ⅳ,Ⅲ,Ⅴ,Ⅱ.Land subsidence tends to deteriorate with the increase in total extraction rate.
文摘According to the characteristics of the methane hydrate condensing and accumulating methane, authors put forward a new technique thought way to prevent the accident of coal and gas outburst by urging the methane in the coal seams to form hydrate. The paper analyzes the feasibility of forming the methane hydrate in the coal seam from the several sides, such as, temperature,pressure, and gas components, and the primary trial results indicate the problems should be settled before the industrialization appliance realized.
基金the National Basic Research Program of China (No.2014CB046905)Innovation Project for Graduates in Jiangsu Province (No.KYLX15_1405)+1 种基金the National Natural Science Foundation of China (Nos.51274191 and 51404245)the Doctoral Fund of Ministry of Education of China (No.20130095110018)
文摘To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable.
基金Projects 2007AA06Z220 supported by the Hi-tech Research and Development Program of China307014 by the Key Science and Technology Program of the Ministry of Education
文摘Exploitation technology of pressure relief coalbed methane in vertical surface wells is a new method for exploration of gas and coalbed methane exploitation in mining areas with high concentrations of gas, where tectonic coal developed. Studies on vertical surface well technology in the Huainan Coal Mining area play a role in demonstration in the use of clean, new energy resources, preventing and reducing coal mine gas accidents and protecting the environment. Based on the practice of gas drainage engineering of pressure relief coalbed methane in vertical surface wells and combined with relative geological and exploration en- gineering theories, the design principles of design and structure of wells of pressure relief coalbed methane in vertical surface wells are studied. The effects of extraction and their causes are discussed and the impact of geological conditions on gas production of the vertical surface wells are analyzed. The results indicate that in mining areas with high concentrations of gas, where tectonic coal developed, a success rate of pressure relief coalbed methane in surface vertical well is high and single well production usually great. But deformation due to coal exploitation could damage boreholes and cause breaks in the connection between aquifers and bore-holes, which could induce a decrease, even a complete halt in gas production of a single well. The design of well site location and wellbore configuration are the key for technology. The development of the geological conditions for coalbed methane have a significant effect on gas production of coalbed methane wells.
文摘The two dimensional problem of simply supported laminated isotropic strips with viscoelastic interfaces and under static loading was studied. Exact solution was derived based on the exact elasticity equation and the Kelvin-Voigt viscoelastic interfacial model. Numerical computations were performed for a strip consisting of three layers of equal thickness. Results indicated that the response of the laminate was very sensitive to the presence of viscoelastic interfaces.
基金Project supported by the National Natural Science Foundation of China (No. 10432030)the China Postdoctoral Science Foundation (No. 20060401071)the Program for New Century Excellent Talent in University of China (No. NCET-05-0510)
文摘Semi-analytical elasticity solutions for bending of angle-ply laminates in cylindrical bending are presented using the state-space-based differential quadrature method (SSDQM). Partial differential state equation is derived from the basic equations of elasticity based on the state space concept. Then, the differential quadrature (DQ) technique is introduced to discretize the longitu- dinal domain of the plate so that a series of ordinary differential state equations are obtained at the discrete points. Meanwhile, the edge constrained conditions are handled directly using the stress and displacement components without the Saint-Venant principle. The thickness domain is solved analytically based on the state space formalism along with the continuity conditions at interfaces. The present method is validated by comparing the results to the exact solutions of Pagano’s problem. Numerical results for fully clamped thick laminates are presented, and the influences of ply angle on stress distributions are discussed.
基金Projects 50490273 and 50574090 supported by the National Natural Science Foundation of China, and 106084 by the Ministry of Education
文摘By means of the numerical simulation software ANSYS, the activation regularity of coal floor faults caused by mining is simulated. The results indicate that the variation in horizontal, vertical and shear stresses, as well as the horizontal and vertical displacements in the upper and the lower fault blocks at the workface are almost identical. Influ- enced by mining of the floor rock, there are stress releasing and stress rising areas at the upper part and at the footwall of the fault. The distribution of stress is influenced by the fault so that the stress isolines are staggered by the fault face and the stress is focused on the rock seam around the two ends of the fault. But the influence in fault activation on the upper or the lower fault blocks of the workface is markedly different. When the workface is on the footwall of the fault, there is a horizontal tension stress area on the upper part of the fault; when the workface is on the upper part of the fault, it has a horizontal compressive stress area on the lower fault block. When the workface is at the lower fault block, the maximum vertical displacement is 5 times larger then when the workface is on the upper fault block, which greatly in- creases the chance of a fatal inrush of water from the coal floor.
文摘The hardening curve for sheet metal can be determined from the load-displacement curve of tensile specimen with rectangular cross-section. Therefore,uniaxial compression test on cylinder specimen made from laminated sample is put forward. Considering the influence of anisotropy on hardening properties and the stress state in popular forming process,plane strain compression test on cubic specimen made from laminated sample was advanced. Results show that the deformation range of hardening curves obtained from the presented methods is wide,which meets the need for the application in sheet metal forming processes. In view of the characteristics of methods presented in the paper and the stress strain state of various forming processes,the adaptability of the two methods presented in this paper is given.
文摘No.4326 super-wide panel of Wangzhuang Coal Mine ( in which the fully-mechanized top-coal caving longwall mining method was used) was monitored for dynamic characteristic of surface movement. The dynamic surface movement in and after mining was predicted by using the Mining Subsidence Prediction System. The results indicate that after mining, the surface above the super-wide panel reaches a state of full subsidence, making the No.309 national highway above the panel be located on the flat bottom of the subsidence basin so that the influence of mining activity in both sides of 4326 panel on the national highway is the smallest.
文摘On the basis of the analysis of coal bed gas pressure in deep mine, and the coal bed permeability ( k ) and the characteristic of adsorption parameter ( b ) changing with temperature, the author puts forward a new calculating method of gas content in coal seam influenced by in situ stress grads and ground temperature. At the same time, the contrast of the measuring results of coal bed gas pressure with the computing results of coal bed gas pressure and gas content in coal seam in theory indicate that the computing method can well reflect the authenticity of gas content in coal seam,and will further perfect the computing method of gas content in coal seam in theory,and have important value in theory on analyzing gas content in coal seam and forecasting distribution law of gas content in coal seam in deep mine.
文摘Deformation modulus is the important parameter in stability analysis of tunnels, dams and mining struc- tures. In this paper, two predictive models including Mamdani fuzzy system (MFS) and multivariable regression analysis (MVRA) were developed to predict deformation modulus based on data obtained from dilatometer tests carried out in Bakhtiary dam site and additional data collected from longwall coal mines. Models inputs were considered to be rock quality designation, overburden height, weathering, unconfined compressive strength, bedding inclination to core axis, joint roughness coefficient and fill thickness. To control the models performance, calculating indices such as root mean square error (RMSE), variance account for (VAF) and determination coefficient (R^2) were used. The MFS results show the significant prediction accuracy along with high performance compared to MVRA results. Finally, the sensitivity analysis of MFS results shows that the most and the least effective parameters on deformation modulus are weatherin~ and overburden height, respectively.
基金Financial support for this work was provided by the National High-Tech Research and Development Program of China (No. 2012AA062101)the Priority Academic Development Program of Jiangsu Higher Education Institutions (No. SZBF2011-6-B35)the Graduate Students Innovation Fund of Colleges and Universities in Jiangsu Province (No. CXZZ12_0950)
文摘According to the special requirements of secondary mining of resources in gateway-and-pillar goal in extra-thick seams of Shanxi, this paper presents a technical proposal of back stoping from level floors. Numerical simulation and theoretical analysis are ccsed to investigate the compaction characteristics of cavities under stress as well as an appropriate mining height of the primary-mining layer based on dif- ferent mining widths and pillar widths. For Yangjian coal mine, the mining thickness of the first seam during back stoping from level floor is determined to be 3 m, which meets the relevant requirements. Gateway-and-pillar goaf of a single layer has a range of influence of 9 m vertically. If gateway-and-pillar goaf occurs both in 9-1 and 9-5 layers, the range is extended to within 11.2 m. When the mining width of a gateway is less than 2 m or larger than 5 m, the gateway-and-pillar goal in the upper layer of the primary-mining seam can be filled in and compacted after stoping. When the working face is 2 m away from the gateway and pillar before entering into it and after passing through it, the coal body under the gateway and pillar is subjected to relatively high stress. During mining of the upper layer, moreover, the working face should interlock the goaf in primary-mining layer for 20 m.
文摘In order to study the dynamic action and physical effects of coal seams and gas, a simulation system for this dynamic action was developed and a physical model built in our laboratory. Using this newly built model, the volume of coal outbursts and the temperature during the outburst process were studied. The results show that: l) for coal seams with similar structure and com- ponents, two factors, i.e., gas pressure and ground stress affect the volume of coal outbursts, with gas pressure being the more im- portant of the two and 2) the changes in coal temperature, both its increase and decrease, are affected by ground stress and gas pressure, it is a process of change. Preliminary tests show that the system can simulate the dynamic interaction of coal and gas, which is helpful for studying the dynamic mechanism of solid-gas coupling of gas and coal.
基金support provided by the Shenhua Ningxia Coal Group Without this assistance,the project would have been difficult to carry out.
文摘In order to improve the efficiency of gas drainage before and during longwall extraction,a waterjet rotary cutting system has been developed for in-seam cross panel methane drainage.The purpose of the water rotary cutting system developed was to create artificial fractures along the gas drainage boreholes.During the design of the system,it was perceived that the nozzle geometry is one of the key factors,affecting cutting capacity.Therefore,we studied the structural and geometric parameters of the nozzle and optimized its performance during laboratory tests and numerical simulation.Underground trials conducted in a coal mine,indicate that production of gas drainage before and after cutting significantly increased by up to three times.The advantages of waterjet assisted gas drainage method has been identified as:1) increasing gas drainage efficiency,2) a possible development of a gas drainage fractured network within coal seams associated with panel extraction,and 3) reducing the risk of exceeding gas limits during longwalling.
基金The National Natural Science Foundation of China (No50275059, 50005008)
文摘This paper suggested to reformulate cylindrical deep drawing parameters with dimensionless form. A diagram, in which a feasible zone is drawn to bound both the maximal allowable tension and compression stress during the deep drawing process, was established. Since it is presented in a dimensionless form, it may be applied for both conventional and micro deep drawing. Cylindrical cup deep drawing was taken as an example to show the dimensionless process design method. In addition, the size effects should be taken into account. Two kinds of size effects on micro deep drawing were investigated, which can be explained by surface layer model and strain gradient model. Numerical simulations were carried out to compare the strain distribution with or without consideration of size effect.
基金Project(2007CB613704)supported by the National Basic Research Program of ChinaProject(50874100)supported by the National Natural Science Foundation of China
文摘In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fabrication and annealing treatment,the microstructural evolution,phase constitution,microhardness,and bonding strength were investigated on the bonding interface zone of GW55/ZG21 laminated composites.The bonding interface zone of GW55/ZG21 laminated composites comprises a lot of Mg3(Y,Gd)2Zn3 particles along the bonding interface,some rod Mg24(Y,Gd)5 phases on GW55 side,and a precipitation free zone(PFZ)on ZG21 side.After annealing treatment,Mg3(Y,Gd)2Zn3 particles along the bonding interface increase, rod Mg24(Y,Gd)5 phases on GW55 side decrease,and PFZ is broadened.Meanwhile,the hardness on the bonding interface zone decreases and the bonding strength increases from 126 MPa to 162 MPa.
基金the Major State Basic Research Program of China which provided for our financial support (No. 2005CB221501)
文摘For a low permeability single coal seam prone to gas outbursts, pre-drainage of gas is difficult and inefficient, seriously restricting the safety and efficiency of production. Radical measures of increasing gas extraction efficiency are pressure relief and infrared antireflection. We have analyzed the effect of mining conditions and the regularity of mine pressure distribution in front of the working face of a major coal mine of the Jiaozuo Industrial (Group) Co. as our test area, studied the width of the depressurization zone in slice mining and analyzed gas efficiency and fast drainage in the advanced stress relaxation zone. On that basis, we further investigated and practiced the exploitation technology of shallow drilling, fan dril- ling and grid shape drilling at the working face. Practice and our results show that the stress relaxation zone is the ideal region for quick and efficient extraction of gas. By means of an integrated extraction technology, the amount of gas emitted into the zone was greatly reduced, while the risk of dangerous outbursts of coal and gas was lowered markedly. This exploration provides a new way to control for gas in working faces of coal mines with low permeability and risk of gas outbursts of single coal seams in the Jiaozuo mining area.