This paper discusses Born/Rytov approximation tomographic velocity inversion methods constrained by the Fresnel zone. Calculations of the sensitivity kernel function and traveltime residuals are critical in tomographi...This paper discusses Born/Rytov approximation tomographic velocity inversion methods constrained by the Fresnel zone. Calculations of the sensitivity kernel function and traveltime residuals are critical in tomographic velocity inversion. Based on the Bom/Rytov approximation of the frequency-domain wave equation, we derive the traveltime sensitivity kemels of the wave equation on the band-limited wave field and simultaneously obtain the traveltime residuals based on the Rytov approximation. In contrast to single-ray tomography, the modified velocity inversion method improves the inversion stability. Tests of the near- surface velocity model and field data prove that the proposed method has higher accuracy and Computational efficiency than ray theory tomography and full waveform inversion methods.展开更多
基金sponsored by the National Natural Science Foundation of China(No.41204086)the Self-governed Innovative Project of China University of Petroleum(No.13CX02041A)+2 种基金the Doctoral Fund of National Ministry of Education(No.20110133120001)the National 863 Project(2011AA060301)the Major National Science and Technology Program(No.2011ZX05006-002)
文摘This paper discusses Born/Rytov approximation tomographic velocity inversion methods constrained by the Fresnel zone. Calculations of the sensitivity kernel function and traveltime residuals are critical in tomographic velocity inversion. Based on the Bom/Rytov approximation of the frequency-domain wave equation, we derive the traveltime sensitivity kemels of the wave equation on the band-limited wave field and simultaneously obtain the traveltime residuals based on the Rytov approximation. In contrast to single-ray tomography, the modified velocity inversion method improves the inversion stability. Tests of the near- surface velocity model and field data prove that the proposed method has higher accuracy and Computational efficiency than ray theory tomography and full waveform inversion methods.