Functionally graded material(FGM)can tailor properties of components such as wear resistance,corrosion resistance,and functionality to enhance the overall performance.The selective laser melting(SLM)additive manufactu...Functionally graded material(FGM)can tailor properties of components such as wear resistance,corrosion resistance,and functionality to enhance the overall performance.The selective laser melting(SLM)additive manufacturing highlights the capability in manufacturing FGMs with a high geometrical complexity and manufacture flexibility.In this work,the 316L/CuSn10/18Ni300/CoCr four-type materials FGMs were fabricated using SLM.The microstructure and properties of the FGMs were investigated to reveal the effects of SLM processing parameters on the defects.A large number of microcracks were found at the 316L/CuSn10 interface,which initiated from the fusion boundary of 316L region and extended along the building direction.The elastic modulus and nano-hardness in the 18Ni300/CoCr fusion zone decreased significantly,less than those in the 18Ni300 region or the CoCr region.The iron and copper elements were well diffused in the 316L/CuSn10 fusion zone,while elements in the CuSn10/18Ni300 and the 18Ni300/CoCr fusion zones showed significantly gradient transitions.Compared with other regions,the width of the CuSn10/18Ni300 interface and the CuSn10 region expand significantly.The mechanisms of materials fusion and crack generation at the 316L/CuSn10 interface were discussed.In addition,FGM structures without macro-crack were built by only altering the deposition subsequence of 316L and CuSn10,which provides a guide for the additive manufacturing of FGM structures.展开更多
TiC, ZrC and TaC modified layers were in-situ prepared on graphite matrix by chemical vapor infiltration method with metal salts as the activator. Taking the TiC modified layer as an example, through thermodynamic cal...TiC, ZrC and TaC modified layers were in-situ prepared on graphite matrix by chemical vapor infiltration method with metal salts as the activator. Taking the TiC modified layer as an example, through thermodynamic calculation and experiment, the thermal decomposition process of raw materials(Ti/K_(2)TiF_(6)) was analyzed, the formation mechanism of TiC was determined, and the distribution of TiC modified layer was modulated. The results show that activator K_(2)TiF_(6)has higher decomposition temperature than NH4Cl, which is conducive to improving the utilization rate of raw materials in the gas infiltration process. Increasing the content of Ti powder can increase the concentration of reaction gas and contribute to the formation of TiC modified layer. When the molar ratio of Ti to K_(2)TiF_(6)is 3:1, the surface thickness and infiltration depth of Ti C are 5.42 and 136.24 μm, respectively. Increasing the reaction temperature can improve the rate of in-situ reaction and the thickness of TiC surface layer. When the experimental temperature rises to 1600 °C, the TiC surface layer thickness increases to 20.27 μm.展开更多
How an individual constituent zone behaves during the deformation of a heterostructured metallic material is a fundamental issue for understanding heterostructure deformation, but it remains a challenge to experimenta...How an individual constituent zone behaves during the deformation of a heterostructured metallic material is a fundamental issue for understanding heterostructure deformation, but it remains a challenge to experimentally observe it. Here we report a study on the stress-strain behavior of the nanostructured gradient layer(NGL) in an integrated gradient specimen that consists of a coarse-grained(CG)central layer sandwiched between two NGLs. Constraint from the CG central layer led to the formation of dense and dispersed stable strain bands(SBs) in the NGL, which regained dislocation hardening after initial recovery and grain coarsening. Consequently, the NGL exhibited a transient plateau of flow stress after yielding, and then regained extra strain hardening to achieve excellent uniform elongation. These unique behaviors are dramatically different from those of a freestanding NGL, indicating a fundamentally different deformation principle that is intrinsic to heterostructures, i.e.,inter-zone constraint modifies the constitutive behavior of constituent zones.展开更多
基金Project(2020B090922002)supported by Guangdong Provincial Key Field Research and Development Program,ChinaProjects(51875215,52005189)supported by the National Natural Science Foundation of ChinaProject(2019B1515120094)supported by Guangdong Provincial Basic and Applied Basic Research Fund,China。
文摘Functionally graded material(FGM)can tailor properties of components such as wear resistance,corrosion resistance,and functionality to enhance the overall performance.The selective laser melting(SLM)additive manufacturing highlights the capability in manufacturing FGMs with a high geometrical complexity and manufacture flexibility.In this work,the 316L/CuSn10/18Ni300/CoCr four-type materials FGMs were fabricated using SLM.The microstructure and properties of the FGMs were investigated to reveal the effects of SLM processing parameters on the defects.A large number of microcracks were found at the 316L/CuSn10 interface,which initiated from the fusion boundary of 316L region and extended along the building direction.The elastic modulus and nano-hardness in the 18Ni300/CoCr fusion zone decreased significantly,less than those in the 18Ni300 region or the CoCr region.The iron and copper elements were well diffused in the 316L/CuSn10 fusion zone,while elements in the CuSn10/18Ni300 and the 18Ni300/CoCr fusion zones showed significantly gradient transitions.Compared with other regions,the width of the CuSn10/18Ni300 interface and the CuSn10 region expand significantly.The mechanisms of materials fusion and crack generation at the 316L/CuSn10 interface were discussed.In addition,FGM structures without macro-crack were built by only altering the deposition subsequence of 316L and CuSn10,which provides a guide for the additive manufacturing of FGM structures.
基金financially supported by the National Natural Science Foundation of China(No.11705281)。
文摘TiC, ZrC and TaC modified layers were in-situ prepared on graphite matrix by chemical vapor infiltration method with metal salts as the activator. Taking the TiC modified layer as an example, through thermodynamic calculation and experiment, the thermal decomposition process of raw materials(Ti/K_(2)TiF_(6)) was analyzed, the formation mechanism of TiC was determined, and the distribution of TiC modified layer was modulated. The results show that activator K_(2)TiF_(6)has higher decomposition temperature than NH4Cl, which is conducive to improving the utilization rate of raw materials in the gas infiltration process. Increasing the content of Ti powder can increase the concentration of reaction gas and contribute to the formation of TiC modified layer. When the molar ratio of Ti to K_(2)TiF_(6)is 3:1, the surface thickness and infiltration depth of Ti C are 5.42 and 136.24 μm, respectively. Increasing the reaction temperature can improve the rate of in-situ reaction and the thickness of TiC surface layer. When the experimental temperature rises to 1600 °C, the TiC surface layer thickness increases to 20.27 μm.
基金National Science Foundation of China(No.30370256&30670313)Chinese National Public-Benefit Program(No.200804006/rhh and 200704005/wb02)to Nanjing Forestry University
基金supported by the National Natural Science Foundation of China (NSFC, 51931003)China Postdoctoral Science Foundation (2020M680223)+2 种基金the NSFC Basic Science Center Program for "Multiscale Problems in Nonlinear Mechanics" (11988102)the Chinese Academy of Sciences (XDB22040503)the National Key R&D Program of China (2017YFA0204403)。
文摘How an individual constituent zone behaves during the deformation of a heterostructured metallic material is a fundamental issue for understanding heterostructure deformation, but it remains a challenge to experimentally observe it. Here we report a study on the stress-strain behavior of the nanostructured gradient layer(NGL) in an integrated gradient specimen that consists of a coarse-grained(CG)central layer sandwiched between two NGLs. Constraint from the CG central layer led to the formation of dense and dispersed stable strain bands(SBs) in the NGL, which regained dislocation hardening after initial recovery and grain coarsening. Consequently, the NGL exhibited a transient plateau of flow stress after yielding, and then regained extra strain hardening to achieve excellent uniform elongation. These unique behaviors are dramatically different from those of a freestanding NGL, indicating a fundamentally different deformation principle that is intrinsic to heterostructures, i.e.,inter-zone constraint modifies the constitutive behavior of constituent zones.