期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
层次式文本分类的Nave Bayes改进方法 被引量:1
1
作者 张博锋 苏金树 徐昕 《计算机工程与科学》 CSCD 2008年第4期20-22,49,共4页
Nave Bayes方法在文本分类中的决策强烈依赖于主观选择的样本关于类别的分布。本文利用层次式分类的特点并引入概率条件改进Nave Bayes方法,使其在每个内部类别所属的子类局部数据中进行决策,缓解了全局数据分布对分类器的影响,部... Nave Bayes方法在文本分类中的决策强烈依赖于主观选择的样本关于类别的分布。本文利用层次式分类的特点并引入概率条件改进Nave Bayes方法,使其在每个内部类别所属的子类局部数据中进行决策,缓解了全局数据分布对分类器的影响,部分克服了数据偏斜问题。实验表明,改进方法在层次式分类中的效果较Nave Bayes方法有显著提高。 展开更多
关键词 文本分类 层次式分类 NAIVE BAYES 机器学习 数据偏斜
下载PDF
基于无标记Web数据的层次式文本分类
2
作者 何力 谭霜 +1 位作者 贾焰 韩伟红 《智能系统学报》 CSCD 北大核心 2014年第3期330-335,共6页
传统的文本分类方法需要标注好的语料来训练分类器,然而人工标记语料代价高昂并且耗时。对此,通过无类别标记的Web数据来训练文本分类器,提出一种基于无标记Web数据的层次式文本分类方法,该方法结合类别知识和主题层次信息来构造Web查询... 传统的文本分类方法需要标注好的语料来训练分类器,然而人工标记语料代价高昂并且耗时。对此,通过无类别标记的Web数据来训练文本分类器,提出一种基于无标记Web数据的层次式文本分类方法,该方法结合类别知识和主题层次信息来构造Web查询,从多种Web数据中搜索相关文档并抽取学习样本,为监督学习找到分类依据,并结合层次式支持向量机进行分类器的学习。实验结果表明,该方法能够利用无标记Web数据学习分类器,并取得了较好的分类效果,其性能接近于有标记训练样本的监督分类方法。 展开更多
关键词 层次文本分类 主题层次 无标记数据分类 支持向量机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部