在综合考虑气候、植被、地貌等因素的基础上,提出一种基于多层次格网模型的最近邻指数-模糊聚类生态区域划分算法(Nearest Neighbor Index Fuzzy Clustering,NNI-FC)。该算法采用"自下而上"的方式,首先,利用离散格网单元之间...在综合考虑气候、植被、地貌等因素的基础上,提出一种基于多层次格网模型的最近邻指数-模糊聚类生态区域划分算法(Nearest Neighbor Index Fuzzy Clustering,NNI-FC)。该算法采用"自下而上"的方式,首先,利用离散格网单元之间的严格相似性形成区划的核心分区;然后,通过最近邻指数统计分析细碎分区的空间格局及其面积覆盖率,再以模糊聚类方法将相似度最大的细碎区聚合归并,即可得到相应的生态区划方案。数值实验证明了该算法可以很好地体现区域的分异特征,并且具有较高的效率。展开更多
Sea ice thickness is highly spatially variable and can cause uneven ocean heat and salt flux on subgrid scales in climate models.Previous studies have demonstrated improvements in ocean mixing simulation using paramet...Sea ice thickness is highly spatially variable and can cause uneven ocean heat and salt flux on subgrid scales in climate models.Previous studies have demonstrated improvements in ocean mixing simulation using parameterization schemes that distribute brine rejection directly in the upper ocean mixed layer.In this study,idealized ocean model experiments were conducted to examine modeled ocean mixing errors as a function of the lead fraction in a climate model grid.When the lead is resolved by the grid,the added salt at the sea surface will sink to the base of the mixed layer and then spread horizontally.When averaged at a climate-model grid size,this vertical distribution of added salt is lead-fraction dependent.When the lead is unresolved,the model errors were systematic leading to greater surface salinity and deeper mixed-layer depth(MLD).An empirical function was developed to revise the added-salt-related parameter n from being fixed to lead-fraction dependent.Application of this new scheme in a climate model showed significant improvement in modeled wintertime salinity and MLD as compared to series of CTD data sets in 1997/1998 and 2006/2007.The results showed the most evident improvement in modeled MLD in the Arctic Basin,similar to that using a fixed n=5,as recommended by the previous Arctic regional model study,in which the parameter n obtained is close to 5 due to the small lead fraction in the Arctic Basin in winter.展开更多
文摘在综合考虑气候、植被、地貌等因素的基础上,提出一种基于多层次格网模型的最近邻指数-模糊聚类生态区域划分算法(Nearest Neighbor Index Fuzzy Clustering,NNI-FC)。该算法采用"自下而上"的方式,首先,利用离散格网单元之间的严格相似性形成区划的核心分区;然后,通过最近邻指数统计分析细碎分区的空间格局及其面积覆盖率,再以模糊聚类方法将相似度最大的细碎区聚合归并,即可得到相应的生态区划方案。数值实验证明了该算法可以很好地体现区域的分异特征,并且具有较高的效率。
基金funded by the University of Alaska Fairbanksthe International Arctic Research Center under NSF Climate Process Team (CPT) projects ARC-0968676 and ARC-0652838+3 种基金funded through grants to the International Arctic Research CenterUniversity of Alaska Fairbanksfrom the Japan Agency for Marine-Earth Science and Technology (JAMSTEC)as part of JAMSTEC and IARC Collaboration Studies(JICS)
文摘Sea ice thickness is highly spatially variable and can cause uneven ocean heat and salt flux on subgrid scales in climate models.Previous studies have demonstrated improvements in ocean mixing simulation using parameterization schemes that distribute brine rejection directly in the upper ocean mixed layer.In this study,idealized ocean model experiments were conducted to examine modeled ocean mixing errors as a function of the lead fraction in a climate model grid.When the lead is resolved by the grid,the added salt at the sea surface will sink to the base of the mixed layer and then spread horizontally.When averaged at a climate-model grid size,this vertical distribution of added salt is lead-fraction dependent.When the lead is unresolved,the model errors were systematic leading to greater surface salinity and deeper mixed-layer depth(MLD).An empirical function was developed to revise the added-salt-related parameter n from being fixed to lead-fraction dependent.Application of this new scheme in a climate model showed significant improvement in modeled wintertime salinity and MLD as compared to series of CTD data sets in 1997/1998 and 2006/2007.The results showed the most evident improvement in modeled MLD in the Arctic Basin,similar to that using a fixed n=5,as recommended by the previous Arctic regional model study,in which the parameter n obtained is close to 5 due to the small lead fraction in the Arctic Basin in winter.