期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多示例学习的异常行为检测方法 被引量:11
1
作者 崔永艳 高阳 《模式识别与人工智能》 EI CSCD 北大核心 2011年第6期862-868,共7页
在基于轨迹分析的异常行为检测方法中,被标记为异常的轨迹往往仅在整条轨迹的某个局部存在异常,轨迹的其余部分都是正常行为.然而,传统的基于整条轨迹建模的方法很难检测轨迹的局部异常.针对上述问题,提出一种在多示例学习框架下基于轨... 在基于轨迹分析的异常行为检测方法中,被标记为异常的轨迹往往仅在整条轨迹的某个局部存在异常,轨迹的其余部分都是正常行为.然而,传统的基于整条轨迹建模的方法很难检测轨迹的局部异常.针对上述问题,提出一种在多示例学习框架下基于轨迹分段的异常行为检测方法.该方法首先根据轨迹的曲率,将轨迹分割成若干相互独立的子段.然后采用层次狄利克雷过程-隐马尔科夫模型对每个子段建模.最后在多示例学习框架下,以整条轨迹为包,正常轨迹为负包,异常轨迹为正包,轨迹子段为包的示例进行学习.通过实验验证,该方法在准确率和召回率上都优于传统的基于轨迹建模的方法. 展开更多
关键词 异常行为检测 轨迹分段 层次狄利克雷过程-马尔科夫模型(hdp—hmm) 多示例学习
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部