Clustered architecture is selected for high level synthesis,and a simultaneous partitioning and scheduling algorithm are proposed.Compared with traditional methods,circuit performance can be improved.Experiments show ...Clustered architecture is selected for high level synthesis,and a simultaneous partitioning and scheduling algorithm are proposed.Compared with traditional methods,circuit performance can be improved.Experiments show the efficiency of the method.展开更多
A new isospectral problem is firstly presented, then we derive integrable system of soliton hierarchy. Also we obtain new integrable couplings of the generalized Kaup-Newell soliton equations hierarchy and its Hamilto...A new isospectral problem is firstly presented, then we derive integrable system of soliton hierarchy. Also we obtain new integrable couplings of the generalized Kaup-Newell soliton equations hierarchy and its Hamiltonian structures by using Tu scheme and the quadratic-form identity. The method can be generalized to other soliton hierarchy.展开更多
Two kinds of higher-dimensional Lie algebras and their loop algebras are introduced, for which a few expanding integrable models including the coupling integrable couplings of the Broer-Kaup (BK) hierarchy and the d...Two kinds of higher-dimensional Lie algebras and their loop algebras are introduced, for which a few expanding integrable models including the coupling integrable couplings of the Broer-Kaup (BK) hierarchy and the dispersive long wave (DLW) hierarchy as well as the TB hierarchy are obtained. From the reductions of the coupling integrable couplings, the corresponding coupled integrable couplings of the BK equation, the DLW equation, and the TB equation are obtained, respectively. Especiaily, the coupling integrable coupling of the TB equation reduces to a few integrable couplings of the well-known mKdV equation. The Hamiltonian structures of the coupling integrable couplings of the three kinds of soliton hierarchies are worked out, respectively, by employing the variationai identity. Finally, we decompose the BK hierarchy of evolution equations into x-constrained flows and tn-eonstrained flows whose adjoint representations and the Lax pairs are given.展开更多
文摘Clustered architecture is selected for high level synthesis,and a simultaneous partitioning and scheduling algorithm are proposed.Compared with traditional methods,circuit performance can be improved.Experiments show the efficiency of the method.
基金Supported by the Natural Science Foundation of China under Grant Nos. 61072147, 11071159, and 10971031by the Natural Science Foundation of Shanghai and Zhejiang Province under Grant Nos. 09ZR1410800 and Y6100791+1 种基金the Shanghai Shuguang Tracking Project under Grant No. 08GG01the Shanghai Leading Academic Discipline Project under Grant No. J50101
文摘A new isospectral problem is firstly presented, then we derive integrable system of soliton hierarchy. Also we obtain new integrable couplings of the generalized Kaup-Newell soliton equations hierarchy and its Hamiltonian structures by using Tu scheme and the quadratic-form identity. The method can be generalized to other soliton hierarchy.
基金Supported by the National Science Foundation of China under Grant No.10971031the Natural Science Foundation of Shandong Province under Grant No.ZR2009AL021
文摘Two kinds of higher-dimensional Lie algebras and their loop algebras are introduced, for which a few expanding integrable models including the coupling integrable couplings of the Broer-Kaup (BK) hierarchy and the dispersive long wave (DLW) hierarchy as well as the TB hierarchy are obtained. From the reductions of the coupling integrable couplings, the corresponding coupled integrable couplings of the BK equation, the DLW equation, and the TB equation are obtained, respectively. Especiaily, the coupling integrable coupling of the TB equation reduces to a few integrable couplings of the well-known mKdV equation. The Hamiltonian structures of the coupling integrable couplings of the three kinds of soliton hierarchies are worked out, respectively, by employing the variationai identity. Finally, we decompose the BK hierarchy of evolution equations into x-constrained flows and tn-eonstrained flows whose adjoint representations and the Lax pairs are given.