Temporal mode direct numerical simulation was done for the process of laminar-turbulent transition in an incompressible boundary layer on a flat plate. The analysis of the results showed that during the breakdown proc...Temporal mode direct numerical simulation was done for the process of laminar-turbulent transition in an incompressible boundary layer on a flat plate. The analysis of the results showed that during the breakdown process of laminar-turbulent transition, the modification of the mean flow profile by the disturbances led to a remarkable change in its stability characteristics, manifested in the significant enlargement of the linear unstable zone and the maximum amplification rate, and led to that many more disturbances were excited and enhanced rapidly, correspondingly the turbulent energy also increased rapidly, and the mean flow profiles evolved swiftly from laminar to turbulent. It was also found that if the oblique waves in the initial disturbances did not form symmetrical pairs, the subsequent span-wise mean velocities would, in general, be nonzero due to nonlinear interaction, which would have a great effect on the stability characteristics and also implied that the turbulence obtained by direct numerical simulation might not be fully a random process.展开更多
基金Supported by National Natural Science Foundation of China (No.90205021)Liu Hui Center of Applied Mathematics ,Nankai Universityand Tianjin University
文摘Temporal mode direct numerical simulation was done for the process of laminar-turbulent transition in an incompressible boundary layer on a flat plate. The analysis of the results showed that during the breakdown process of laminar-turbulent transition, the modification of the mean flow profile by the disturbances led to a remarkable change in its stability characteristics, manifested in the significant enlargement of the linear unstable zone and the maximum amplification rate, and led to that many more disturbances were excited and enhanced rapidly, correspondingly the turbulent energy also increased rapidly, and the mean flow profiles evolved swiftly from laminar to turbulent. It was also found that if the oblique waves in the initial disturbances did not form symmetrical pairs, the subsequent span-wise mean velocities would, in general, be nonzero due to nonlinear interaction, which would have a great effect on the stability characteristics and also implied that the turbulence obtained by direct numerical simulation might not be fully a random process.