Turbulent boundary layer control(TBLC) for skin-friction drag reduction is a relatively new technology made possible through the advances in computational-simulation capabilities,which have improved the understanding ...Turbulent boundary layer control(TBLC) for skin-friction drag reduction is a relatively new technology made possible through the advances in computational-simulation capabilities,which have improved the understanding of the flow structures of turbulence.Advances in micro-electronic technology have enabled the fabrication of active device systems able to manipulating these structures.The combination of simulation,understanding and micro-actuation technologies offers new opportunities to significantly decrease drag,and by doing so,to increase fuel efficiency of future aircraft.The literature review that follows shows that the application of active control turbulent skin-friction drag reduction is considered of prime importance by industry,even though it is still at a low technology readiness level(TRL).This review presents the state of the art of different technologies oriented to the active and passive control for turbulent skin-friction drag reduction and contributes to the improvement of these technologies.展开更多
基金supported by the European Commission though the Research and Innovation action DRAGY(Grant No.690623)the Ministry of Industry and Information Technology(MIIT)of the Chinese government
文摘Turbulent boundary layer control(TBLC) for skin-friction drag reduction is a relatively new technology made possible through the advances in computational-simulation capabilities,which have improved the understanding of the flow structures of turbulence.Advances in micro-electronic technology have enabled the fabrication of active device systems able to manipulating these structures.The combination of simulation,understanding and micro-actuation technologies offers new opportunities to significantly decrease drag,and by doing so,to increase fuel efficiency of future aircraft.The literature review that follows shows that the application of active control turbulent skin-friction drag reduction is considered of prime importance by industry,even though it is still at a low technology readiness level(TRL).This review presents the state of the art of different technologies oriented to the active and passive control for turbulent skin-friction drag reduction and contributes to the improvement of these technologies.