期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
杉木层状压缩的形成及其密度分布特征
1
作者 李晓玲 黄荣凤 +5 位作者 何啸宇 王艳伟 孙龙祥 卢芸 黎静 冯上环 《木材科学与技术》 北大核心 2024年第3期11-20,共10页
实木层状压缩技术是以实体木材的定向定位压缩为目标,以最小的材积损耗,最大限度地提高木材力学性能的一种新型木材压缩方法。通过水热分布调控以及外力加载的协同作用,在调控压缩层的形成位置、厚度和多层压缩的基础上,分析压缩木材密... 实木层状压缩技术是以实体木材的定向定位压缩为目标,以最小的材积损耗,最大限度地提高木材力学性能的一种新型木材压缩方法。通过水热分布调控以及外力加载的协同作用,在调控压缩层的形成位置、厚度和多层压缩的基础上,分析压缩木材密度分布特征,研究层状压缩技术对于人工林杉木(Cunninghamia lanceolata)的适用性及其层状压缩形成的特点。结果表明:预热时间控制在0.5~30 min之间时,获得压缩层位置不同的层状压缩杉木。随着预热时间的增加,压缩层由表层逐渐向中心(厚度方向)移动,压缩层密度达到0.583 g/cm^(3)及以上;通过调控压缩量,获得压缩层厚度为3.00~8.07 mm的4种厚度的表层压缩杉木,压缩层密度提高率比木材整体密度提高率平均高28.7%;将表层压缩和中心层压缩工艺并用,实现形成3个压缩层的多层压缩。扫描电镜观察结果表明,无论压缩层形成于表层还是中心层,压缩层与未压缩层界线出现在早材区域或早晚材交界处,压缩层的早材细胞发生细胞壁屈曲变形,至细胞腔几乎完全消失,而晚材细胞壁及细胞腔仅发生微变形或不变形。依据压缩前后木材密度分布曲线及特征值计算结果,杉木压缩层部位的早材密度提高率最大值可以达到210.6%。 展开更多
关键词 人工林杉木 层状压缩 密度分布 压缩层位置 压缩层厚度 早晚材 细胞壁屈曲变形
下载PDF
预热温度对层状压缩木材力学性能的影响 被引量:1
2
作者 李任 黄荣凤 +2 位作者 常建民 高志强 伍艳梅 《浙江农林大学学报》 CAS CSCD 北大核心 2018年第5期935-941,共7页
不同预热温度下形成的层状压缩木材,因压缩层位置差异形成的不同结构及预热温度本身的变化均会引起力学性能变化。以毛白杨Populus tomentosa弦向板为材料,采用水热控制方法,通过改变预热温度获得了压缩层位于表层至中心层的不同结构的... 不同预热温度下形成的层状压缩木材,因压缩层位置差异形成的不同结构及预热温度本身的变化均会引起力学性能变化。以毛白杨Populus tomentosa弦向板为材料,采用水热控制方法,通过改变预热温度获得了压缩层位于表层至中心层的不同结构的层状压缩木材。对其表面硬度、木材硬度、抗弯弹性模量与抗弯强度进行对比研究。结果表明:(1)随着预热温度的升高,木材表面硬度显著升高(P<0.01),较对照的增加率为3.9%~57.2%,而木材硬度则极显著降低(P<0.001),较对照的增加率为8.6%~38.5%。这个结果与压缩层随着预热温度升高,逐渐由表层向中心层移动形成的表层下0.32和2.82 mm厚度范围内木材的平均密度变化以及高温的作用密切相关。(2)随着预热温度的升高,弦向弯曲弹性模量逐渐增大,径向弯曲弹性模量逐渐减小;抗弯强度先增大, 150℃后逐渐减小;但抗弯性能无显著差异(P>0.05)。不同预热温度下形成的层状压缩木材的力学性主要受其结构的影响,其次是温度的影响。控制压缩层的位置出现于木材表层,同时提高压缩层的密度,可获得力学性能更好的层状压缩木材。 展开更多
关键词 木材学 层状压缩木材 预热温度 木材表面硬度 木材硬度 抗弯弹性模量 抗弯强度
下载PDF
木材湿热软化压缩技术及其机制研究进展 被引量:9
3
作者 黄荣凤 高志强 吕建雄 《林业科学》 EI CAS CSCD 北大核心 2018年第1期154-161,共8页
木材压缩是提高软质木材密度、强度和硬度,改善木材物理力学性能,扩大木材应用范围的有效方法。本文针对湿热软化下的木材压缩问题,从木材软化机制、软化特性、软化点的确定、热板加热下的传热传质特性、层状压缩的形成和压缩变形固定... 木材压缩是提高软质木材密度、强度和硬度,改善木材物理力学性能,扩大木材应用范围的有效方法。本文针对湿热软化下的木材压缩问题,从木材软化机制、软化特性、软化点的确定、热板加热下的传热传质特性、层状压缩的形成和压缩变形固定等方面分析木材压缩技术的研究现状、进展以及存在的问题。木材细胞壁的成分和组织构造是影响木材软化和压缩变形的主要内在因素,而湿和热则是影响木材压缩变形的外在因素。木材是一种具有弹塑性的天然高聚物。干燥木材缺乏塑性,水分和热量都能对木材组分起到增塑作用,特别是在湿热共同作用下增塑作用更加显著。木材细胞壁主要成分纤维素、半纤维素和木质素的特性及所占比例直接影响木材的可塑性,其中木质素的含量和软化特性是木材软化的主要影响因素。玻璃化转变温度和应力屈服点是表征木材软化最常用的参数。在木材弹塑性分析中,应力屈服点控制了木材在塑性区域的应力-应变关系,同时也决定了塑性变形潜能,但由于木材成分和结构非常复杂,应力-应变关系的拐点并不明显,因此应力屈服点和屈服应力的确定是木材塑性变形表征的关键点,也是一个难点。木材的组织构造主要影响木材的传热传质过程。利用木材3个断面渗透性的显著差异,通过干燥、浸水、放置、热板加热等处理,可使木材内部各个层面上形成差异显著的含水率梯度分布和屈服应力差,压缩后形成层状压缩木材。层状压缩木材压缩层的密度可达0.8 g·cm-3以上,未压缩层仍然保持原有的密度,而且压缩层的形成部位是可控的。层状压缩技术可以解决整体压缩木材损失大的问题,但目前木材压缩变形机制的研究都是围绕木材整体压缩开展的,缺乏木材软化点和屈服应力随含水率变化规律以及热板加热下木材内部屈服应力差变化规律的基础研究。要实现层状压缩的可控性,还需要在热板加热下的传热传质规律及木材湿热梯度分布的形成与调控等方面开展深入研究。 展开更多
关键词 湿热软化 整体压缩 层状压缩 传热传质 屈服应力
下载PDF
木材横纹压缩应力-应变关系及其影响因素研究进展 被引量:10
4
作者 伍艳梅 黄荣凤 +2 位作者 高志强 王艳伟 李任 《林产工业》 北大核心 2018年第11期11-16,共6页
木材横向压缩下应力-应变关系对压缩材料热压工艺的设计和最终产品的物理力学性能有着重要的影响。从木材横纹压缩应力-应变关系和屈服点的确定入手,重点阐述从微观到宏观角度的木材自身组织构造特性,以及压缩工艺参数中温度、含水率等... 木材横向压缩下应力-应变关系对压缩材料热压工艺的设计和最终产品的物理力学性能有着重要的影响。从木材横纹压缩应力-应变关系和屈服点的确定入手,重点阐述从微观到宏观角度的木材自身组织构造特性,以及压缩工艺参数中温度、含水率等因素对木材横纹压缩应力-应变关系的影响,并对今后木材横纹压缩技术研究方向提出了建议。目前木材横纹压缩变形机制的研究多是围绕木材整体压缩开展,缺乏木材应力-应变关系随木材自身特性及含水率、温度交互作用变化规律的系统研究,以及湿热状态下层状压缩木材内部屈服应力差形成机制的研究。要实现层状压缩木材压缩层位置和厚度的可控性,需要在准确确定木材屈服点和掌握木材应力-应变关系的湿热响应规律的前提下,科学构建适用于湿热条件下木材层状压缩应力-应变关系模型。 展开更多
关键词 横纹压缩 应力-应变关系 层状压缩 屈服点 屈服应力
下载PDF
水热预处理软质材内部水分移动及压缩剖面形态的响应规律
5
作者 孔繁旭 王艳伟 +2 位作者 何啸宇 张子谷 孙龙祥 《林产工业》 北大核心 2022年第5期1-7,共7页
以朴木、桦木、番龙眼3种相对软质材地板坯料为研究对象,研究层状压缩中水热预处理工艺对其厚度方向水分移动、分布的影响规律,以及与其压缩横断剖面形态的响应关系。结果表明:1)浸水温度高,进水量多。朴木、桦木进水量大小关系为,桦木... 以朴木、桦木、番龙眼3种相对软质材地板坯料为研究对象,研究层状压缩中水热预处理工艺对其厚度方向水分移动、分布的影响规律,以及与其压缩横断剖面形态的响应关系。结果表明:1)浸水温度高,进水量多。朴木、桦木进水量大小关系为,桦木≤朴木(20℃)、桦木<朴木(40℃)、桦木>朴木(60℃),两者均显著高于番龙眼;进水速率变化规律为,浸水1 h内,迅速降低,在2~4 h内趋于平缓。2)木材浸水后密度,近表面高、近心层低;水分进入深度影响因素相关性的大小关系为,树种>浸水温度>浸水时间。3)热压预热温度175℃,调整浸水、热压预热时间,可实现3种木材表层、中间层、中心层选择性压缩。其中,预热20 s:木材实现表层压缩;预热200 s:中间层压缩;预热600 s:中心层压缩。 展开更多
关键词 软质材 层状压缩 地热地板 压缩工艺 水热预处理
下载PDF
含水率非均匀分布木材在热板加热下温度分布的变化规律 被引量:1
6
作者 黄荣凤 高志强 +1 位作者 冯上环 向娥琳 《木材科学与技术》 北大核心 2023年第1期40-47,共8页
热作用下温度分布和含水率分布的变化规律,是实木层状压缩形成机制研究的基础。以初含水率处于非均匀分布状态下的毛白杨木材为对象,研究在180℃热板夹持加热过程中的温度分布变化规律,为揭示层状压缩形成机制提供科学依据。结果表明:... 热作用下温度分布和含水率分布的变化规律,是实木层状压缩形成机制研究的基础。以初含水率处于非均匀分布状态下的毛白杨木材为对象,研究在180℃热板夹持加热过程中的温度分布变化规律,为揭示层状压缩形成机制提供科学依据。结果表明:初始含水率表层高、内部低的木材,在热板夹持加热过程中,厚度方向上始终存在一个明显的升温速率峰值。随着加热时间的延长,升温速率峰值和高含水率层逐渐向中心移动;高含水率区域内木材,温度较玻璃化转变温度高6.11~47.58℃,处于层状软化状态,是层状压缩形成的重要原因之一;采用多元线性回归分析方法建立的木材厚度方向温度预测多变量函数模型,决定系数为0.985,预测木材内部温度的标准误差为3.21℃,能够用于木材内部温度分布的预测。 展开更多
关键词 含水率非均匀分布木材 热板加热 升温速率 温度分布 层状压缩
下载PDF
A whole process damage constitutive model for layered sandstone under uniaxial compression based on Logistic function
7
作者 LIU Dong-qiao GUO Yun-peng +1 位作者 LING Kai LI Jie-yu 《Journal of Central South University》 SCIE EI CAS 2024年第7期2411-2430,共20页
Bedding structural planes significantly influence the mechanical properties and stability of engineering rock masses.This study conducts uniaxial compression tests on layered sandstone with various bedding angles(0... Bedding structural planes significantly influence the mechanical properties and stability of engineering rock masses.This study conducts uniaxial compression tests on layered sandstone with various bedding angles(0°,15°,30°,45°,60°,75°and 90°)to explore the impact of bedding angle on the deformational mechanical response,failure mode,and damage evolution processes of rocks.It develops a damage model based on the Logistic equation derived from the modulus’s degradation considering the combined effect of the sandstone bedding dip angle and load.This model is employed to study the damage accumulation state and its evolution within the layered rock mass.This research also introduces a piecewise constitutive model that considers the initial compaction characteristics to simulate the whole deformation process of layered sandstone under uniaxial compression.The results revealed that as the bedding angle increases from 0°to 90°,the uniaxial compressive strength and elastic modulus of layered sandstone significantly decrease,slightly increase,and then decline again.The corresponding failure modes transition from splitting tensile failure to slipping shear failure and back to splitting tensile failure.As indicated by the modulus’s degradation,the damage characteristics can be categorized into four stages:initial no damage,damage initiation,damage acceleration,and damage deceleration termination.The theoretical damage model based on the Logistic equation effectively simulates and predicts the entire damage evolution process.Moreover,the theoretical constitutive model curves closely align with the actual stress−strain curves of layered sandstone under uniaxial compression.The introduced constitutive model is concise,with fewer parameters,a straightforward parameter determination process,and a clear physical interpretation.This study offers valuable insights into the theory of layered rock mechanics and holds implications for ensuring the safety of rock engineering. 展开更多
关键词 layered sandstone uniaxial compression damage evolution Logistic function constitutive model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部