采用传统的固相烧结法,制备了Na0.5Ho0.5-xYbxBi4Ti4O15铋层状结构陶瓷.经X射线衍射(XRD)表征,新合成材料为单相结构,且扫描电子显微镜下的表面和断面图像均为层状,说明合成材料为新型铋层状材料.室温时,在可见光波长范围内,有2个峰,...采用传统的固相烧结法,制备了Na0.5Ho0.5-xYbxBi4Ti4O15铋层状结构陶瓷.经X射线衍射(XRD)表征,新合成材料为单相结构,且扫描电子显微镜下的表面和断面图像均为层状,说明合成材料为新型铋层状材料.室温时,在可见光波长范围内,有2个峰,分别为546 nm处的绿光峰和656 nm处的红光峰,分别对应于Ho3+离子的5F4+5S2→5I8和5F5→5I8跃迁.为研究其机理,测试了变功率条件下的发光强度,经计算,绿光和红光发射均为双光子过程.研究陶瓷样品在变温(-130~270°C)条件下的发光性能时,发现红光与绿光的强度比值与温度呈线性关系,该材料有望应用于光学温度传感器领域.经介电性能测试发现当Ho:Yb=1:9时,样品的居里温度为686.4°C.研究铁电性能发现当Ho:Yb=3:2时,剩余极化Pr为9.3μC/cm2,矫顽场强为Ec=82 k V/cm,表明具有一定的铁电性能.以上研究结果表明,制得的新材料是一种具有优异光学性能的多功能材料.展开更多
To investigate potential strengthening approaches,multi-layered zirconium–titanium(Zr-Ti)composites were fabricated by hot-rolling bonding and annealing.The microstructures of these composites were characterized usin...To investigate potential strengthening approaches,multi-layered zirconium–titanium(Zr-Ti)composites were fabricated by hot-rolling bonding and annealing.The microstructures of these composites were characterized using scanning electron microscopy with energy dispersive spectroscopy(SEM-EDS)and electron backscatter diffractometry(EBSD).Their mechanical properties were evaluated by uniaxial tension and compression measurements.It was found that the fabricated Zr–Ti composites are composed of alternating Zr/diffusion/Ti layers,and chemical compositions of Zr and Ti showed a gradient distribution in the diffusion layer.Compared with as-rolled samples,annealing can strengthen the layered gradient Zr–Ti composite,and this is mainly caused by solid-solution strengthening and microstructure refinement-induced strengthening.Compared with the raw materials,a synergistic improvement of strength and ductility is achieved in the Zr–Ti composite as a result of the layered gradient microstructure.Tension–compression asymmetry is observed in the Zr–Ti composites,which may be attributed to twinning and microvoids induced by unbalanced diffusion.展开更多
Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope duri...Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass.展开更多
The commercialized lithium secondary cells need the electrode materials with high speeific capacity, lower pollution and lower price. Certain industrial materials ( NiSO_4, CoSO_4 , LiOH·H_2O)were used to synthes...The commercialized lithium secondary cells need the electrode materials with high speeific capacity, lower pollution and lower price. Certain industrial materials ( NiSO_4, CoSO_4 , LiOH·H_2O)were used to synthesize Ni_(0.8)Co_(0.2)(OH)_2 of a stratified structure, when various synthesis conditions such as pH, reaction temperature et al. were controlled strictly. After LiOH·H_2O and Ni_(0.8)Co_(0.2) (OH)_2were calcinated in air atmosphere, LiNi_(0.8)Co_(0.2)O_2 positive electrode materials with good layered crystal structure was obtained. Tests showed that the optimal calcination temperature in air atmosphere was about at 720℃ and LiNi_(0.8)Co_(0.2)O_2 synthesized in the above conditions had good electrochemical properties and a low cost. The first specific: discharge capacity of the material was 186 mAh/g, and the specific discharge capacity was 175 mAh/g after 50 cycles at a 0.2C rate, between 3.0~4.2 V with a discharge deterioration ratio of 0.22% each cycle. Tests showed that LiNi_(0.8)Co_(0.2)O_2 positive electrode materials was a promising candidate to replace the commereialized LiCoO_2 for lithium secondary batteries.展开更多
We report on a Te-seeded epitaxial growth of ultrathin Bi2Te3 nanoplates (down to three quintuple layers (QL)) with large planar sizes (up to tens of micrometers) through vapor transport. Optical contrast has be...We report on a Te-seeded epitaxial growth of ultrathin Bi2Te3 nanoplates (down to three quintuple layers (QL)) with large planar sizes (up to tens of micrometers) through vapor transport. Optical contrast has been systematically investigated for the as-grown Bi2Te3 nanoplates on the SiO2/Si substrates, experimentally and computationally. The high and distinct optical contrast provides a fast and convenient method for the thickness determination of few-QL Bi2Te3 nanoplates. By aberration-corrected scanning transmission electron microscopy, a hexagonal crystalline structure has been identified for the Te seeds, which form naturally during the growth process and initiate an epitaxial growth of the rhombohedral- structured Bi2Te3 nanoplates. The epitaxial relationship between Te and Bi2T% is identified to be perfect along both in-plane and out-of-plane directions of the layered nanoplate. Similar growth mechanism might be expected for other bismuth chalcogenide layered materials.展开更多
Highly crystalline and thermally stable pure multi-walled Ni3Si2O5(OH)4 nanotubes with a layered structure have been synthesized in water at a relatively low temperature of 200-210 ℃ using a facile and simple metho...Highly crystalline and thermally stable pure multi-walled Ni3Si2O5(OH)4 nanotubes with a layered structure have been synthesized in water at a relatively low temperature of 200-210 ℃ using a facile and simple method. The nickel ions between the layers could be reduced in situ to form size-tunable Ni nanocrystals, which endowed these nanotubes with tunable magnetic properties. Additionally, when used as the anode material in a lithium ion battery, the layered structure of the Ni3Si2O5(OH)4 nanotubes provided favorable transport kinetics for lithium ions and the discharge capacity reached 226.7 mA.h.g-1 after 21 cycles at a rate of 20 mA.g-1, Furthermore, after the nanotubes were calcined (600 ℃, 4 h) or reduced (180℃ 10 h), the corresponding discharge capacities increased to 277.2 mA.h.g-1 and 308.5 mA.h.g-1, respectively.展开更多
The interlayer space of the layered materials is not always the electrochemical active area for contributing to the pseudocapacitive process. To our knowledge, few efforts have been devoted to investigating the effect...The interlayer space of the layered materials is not always the electrochemical active area for contributing to the pseudocapacitive process. To our knowledge, few efforts have been devoted to investigating the effect of interlayer distance of layered double hydroxides(LDHs) on pseudocapacitors. Here, we obtained the CoAl-LDH with different interlayer distance via the reaction in aqueous media hydrothermally. Electrochemical characterization reveals that the CoAl(DS^-(dodecyl sulfate))-LDHs with an interlayer distance of 2.58 nm can deliver higher specific capacitance of 1481.7 F g^-1 than CoAl(SO4^2-)-LDH(0.87 nm, 1252.7 F g^-1) and CoAl(CO3^2-)-LDH(0.76 nm, 1149.2 Fg^-1) at a discharge current density of 1 A g^-1. An asymmetric supercapacitor with the CoAl(DS^-)-LDHs‖activated carbon also shows a better electrochemical performance, including a high energy density of54.2 W h kg^-1 at a power density of 0.9 kW kg^-1 and a longterm stability, in comparison with CoAl(SO4^2-)-LDH and CoAl(CO3^2-)-LDH ‖activated carbon.展开更多
A combined ME composite structure is made of several cylindrical layered composites in series or parallel connection.Due to the cylindrical structure,the combined structure does not need more space.The characteristics...A combined ME composite structure is made of several cylindrical layered composites in series or parallel connection.Due to the cylindrical structure,the combined structure does not need more space.The characteristics of multi-resonance frequencies have been studied.Each resonance frequency of the structure can be adjusted by changing the cylinder diameter of the corresponding cylindrical layered composites.The number of resonance frequencies increases as the number of cylindrical layered composites increases.The multi-resonance frequencies behavior makes these cylindrical layered composite structures suitable for applications in multifuctional devices with multi-frequencies operation.展开更多
A phenomenon about optical bistability is successfully investigated in a layered structure consisting of a silver film with Kerr medium and a silver grating sandwiched between semi-infinite linear dielectrics.This typ...A phenomenon about optical bistability is successfully investigated in a layered structure consisting of a silver film with Kerr medium and a silver grating sandwiched between semi-infinite linear dielectrics.This type of structure can lead to the optical bistability phenomena occurring in reflection and transmission.There exists an optimal thickness of the metal grating that can cut off the effect of the near-field enhancement and may have the lowest effect on conversion from surface plasmon to light.This structure can realize the functions of the beam splitter and the polarization splitter and will be essential for future classical and quantum information processing.展开更多
文摘采用传统的固相烧结法,制备了Na0.5Ho0.5-xYbxBi4Ti4O15铋层状结构陶瓷.经X射线衍射(XRD)表征,新合成材料为单相结构,且扫描电子显微镜下的表面和断面图像均为层状,说明合成材料为新型铋层状材料.室温时,在可见光波长范围内,有2个峰,分别为546 nm处的绿光峰和656 nm处的红光峰,分别对应于Ho3+离子的5F4+5S2→5I8和5F5→5I8跃迁.为研究其机理,测试了变功率条件下的发光强度,经计算,绿光和红光发射均为双光子过程.研究陶瓷样品在变温(-130~270°C)条件下的发光性能时,发现红光与绿光的强度比值与温度呈线性关系,该材料有望应用于光学温度传感器领域.经介电性能测试发现当Ho:Yb=1:9时,样品的居里温度为686.4°C.研究铁电性能发现当Ho:Yb=3:2时,剩余极化Pr为9.3μC/cm2,矫顽场强为Ec=82 k V/cm,表明具有一定的铁电性能.以上研究结果表明,制得的新材料是一种具有优异光学性能的多功能材料.
基金financially supported by the National Natural Science Foundation of China(No.51971041)the Natural Science Foundation of Chongqing,China(No.cstc2019jcyj-msxm X0234)。
文摘To investigate potential strengthening approaches,multi-layered zirconium–titanium(Zr-Ti)composites were fabricated by hot-rolling bonding and annealing.The microstructures of these composites were characterized using scanning electron microscopy with energy dispersive spectroscopy(SEM-EDS)and electron backscatter diffractometry(EBSD).Their mechanical properties were evaluated by uniaxial tension and compression measurements.It was found that the fabricated Zr–Ti composites are composed of alternating Zr/diffusion/Ti layers,and chemical compositions of Zr and Ti showed a gradient distribution in the diffusion layer.Compared with as-rolled samples,annealing can strengthen the layered gradient Zr–Ti composite,and this is mainly caused by solid-solution strengthening and microstructure refinement-induced strengthening.Compared with the raw materials,a synergistic improvement of strength and ductility is achieved in the Zr–Ti composite as a result of the layered gradient microstructure.Tension–compression asymmetry is observed in the Zr–Ti composites,which may be attributed to twinning and microvoids induced by unbalanced diffusion.
基金Projects 50490275 and 50525825 supported by the National Natural Science Foundation of China
文摘Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass.
文摘The commercialized lithium secondary cells need the electrode materials with high speeific capacity, lower pollution and lower price. Certain industrial materials ( NiSO_4, CoSO_4 , LiOH·H_2O)were used to synthesize Ni_(0.8)Co_(0.2)(OH)_2 of a stratified structure, when various synthesis conditions such as pH, reaction temperature et al. were controlled strictly. After LiOH·H_2O and Ni_(0.8)Co_(0.2) (OH)_2were calcinated in air atmosphere, LiNi_(0.8)Co_(0.2)O_2 positive electrode materials with good layered crystal structure was obtained. Tests showed that the optimal calcination temperature in air atmosphere was about at 720℃ and LiNi_(0.8)Co_(0.2)O_2 synthesized in the above conditions had good electrochemical properties and a low cost. The first specific: discharge capacity of the material was 186 mAh/g, and the specific discharge capacity was 175 mAh/g after 50 cycles at a 0.2C rate, between 3.0~4.2 V with a discharge deterioration ratio of 0.22% each cycle. Tests showed that LiNi_(0.8)Co_(0.2)O_2 positive electrode materials was a promising candidate to replace the commereialized LiCoO_2 for lithium secondary batteries.
文摘We report on a Te-seeded epitaxial growth of ultrathin Bi2Te3 nanoplates (down to three quintuple layers (QL)) with large planar sizes (up to tens of micrometers) through vapor transport. Optical contrast has been systematically investigated for the as-grown Bi2Te3 nanoplates on the SiO2/Si substrates, experimentally and computationally. The high and distinct optical contrast provides a fast and convenient method for the thickness determination of few-QL Bi2Te3 nanoplates. By aberration-corrected scanning transmission electron microscopy, a hexagonal crystalline structure has been identified for the Te seeds, which form naturally during the growth process and initiate an epitaxial growth of the rhombohedral- structured Bi2Te3 nanoplates. The epitaxial relationship between Te and Bi2T% is identified to be perfect along both in-plane and out-of-plane directions of the layered nanoplate. Similar growth mechanism might be expected for other bismuth chalcogenide layered materials.
基金This work was supported by the Natural Science Foundation of China (No. 20725102), the Fok Ying Tung Education Foundation (No. 111012), and the State Key Project of Fundamental Research for Nanoscience and Nanotechnology (Nos. 2011CB932402, 2007CB310501, and 2011CB935704).
文摘Highly crystalline and thermally stable pure multi-walled Ni3Si2O5(OH)4 nanotubes with a layered structure have been synthesized in water at a relatively low temperature of 200-210 ℃ using a facile and simple method. The nickel ions between the layers could be reduced in situ to form size-tunable Ni nanocrystals, which endowed these nanotubes with tunable magnetic properties. Additionally, when used as the anode material in a lithium ion battery, the layered structure of the Ni3Si2O5(OH)4 nanotubes provided favorable transport kinetics for lithium ions and the discharge capacity reached 226.7 mA.h.g-1 after 21 cycles at a rate of 20 mA.g-1, Furthermore, after the nanotubes were calcined (600 ℃, 4 h) or reduced (180℃ 10 h), the corresponding discharge capacities increased to 277.2 mA.h.g-1 and 308.5 mA.h.g-1, respectively.
基金financially supported by the National Natural Science Foundation of China (21501152,21571159,21671178,21441003,51521091 and 51525206)China Postdoctoral Science Foundation (2017M611282)+5 种基金Program for Changjiang Scholars and Innovative Research Team in University (IRT15R61)Ministry of Science and Technology of China (2016YFA0200100 and 2016YBF0100100)Foundation of Zhengzhou University of Light Industry (2014BSJJ054)Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09010104)Projects for Public Entrepreneurship and Public Innovation of ZZULI (2017ZCKJ215)Key Program of Henan Province for Science and Technology (162102210212)
文摘The interlayer space of the layered materials is not always the electrochemical active area for contributing to the pseudocapacitive process. To our knowledge, few efforts have been devoted to investigating the effect of interlayer distance of layered double hydroxides(LDHs) on pseudocapacitors. Here, we obtained the CoAl-LDH with different interlayer distance via the reaction in aqueous media hydrothermally. Electrochemical characterization reveals that the CoAl(DS^-(dodecyl sulfate))-LDHs with an interlayer distance of 2.58 nm can deliver higher specific capacitance of 1481.7 F g^-1 than CoAl(SO4^2-)-LDH(0.87 nm, 1252.7 F g^-1) and CoAl(CO3^2-)-LDH(0.76 nm, 1149.2 Fg^-1) at a discharge current density of 1 A g^-1. An asymmetric supercapacitor with the CoAl(DS^-)-LDHs‖activated carbon also shows a better electrochemical performance, including a high energy density of54.2 W h kg^-1 at a power density of 0.9 kW kg^-1 and a longterm stability, in comparison with CoAl(SO4^2-)-LDH and CoAl(CO3^2-)-LDH ‖activated carbon.
基金supported by the National High Technology Research and Development Program of China(Grant No.2012AA030403)National Natural Science Foundation of China(Grant Nos.51032003,11274198,51102148,51221291)+2 种基金Shandong Natural Science Foundation(Grant No.ZR2010AM025)the China Postdoctoral Research Foundation(Grant No.2013M530042)the Research Fund for the Doctoral Program of Higher Education(Grant No.2010000612003)
文摘A combined ME composite structure is made of several cylindrical layered composites in series or parallel connection.Due to the cylindrical structure,the combined structure does not need more space.The characteristics of multi-resonance frequencies have been studied.Each resonance frequency of the structure can be adjusted by changing the cylinder diameter of the corresponding cylindrical layered composites.The number of resonance frequencies increases as the number of cylindrical layered composites increases.The multi-resonance frequencies behavior makes these cylindrical layered composite structures suitable for applications in multifuctional devices with multi-frequencies operation.
基金supported by National Basic Research Program of China(Grant No.2010CB923202)
文摘A phenomenon about optical bistability is successfully investigated in a layered structure consisting of a silver film with Kerr medium and a silver grating sandwiched between semi-infinite linear dielectrics.This type of structure can lead to the optical bistability phenomena occurring in reflection and transmission.There exists an optimal thickness of the metal grating that can cut off the effect of the near-field enhancement and may have the lowest effect on conversion from surface plasmon to light.This structure can realize the functions of the beam splitter and the polarization splitter and will be essential for future classical and quantum information processing.