期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
层级引导的增强型多目标萤火虫算法 被引量:1
1
作者 赵嘉 赖智臻 +2 位作者 吴润秀 崔志华 王晖 《系统仿真学报》 CAS CSCD 北大核心 2024年第5期1152-1164,共13页
针对多目标萤火虫算法在求解过程中易产生振荡和聚集现象,导致开发能力较弱、求解精度不佳的问题,提出一种层级引导的增强型多目标萤火虫算法(hierarchical guided enhanced multi-objective firefly algorithm,HGEMOFA)。构建层级引导... 针对多目标萤火虫算法在求解过程中易产生振荡和聚集现象,导致开发能力较弱、求解精度不佳的问题,提出一种层级引导的增强型多目标萤火虫算法(hierarchical guided enhanced multi-objective firefly algorithm,HGEMOFA)。构建层级引导模型,利用非支配排序获得不同层级个体,用优势层个体引导劣势层个体进化,明确引导方向,解决了进化过程中出现的振荡,减少了聚集现象的出现,增强了算法收敛性;引入莱维飞行扰动最优层个体,增强算法的全局搜索能力;每代进化完成后,对当前种群采用变异机制,增强算法的局部开发能力;把变异后的种群和前一代种群合并进行环境选择,筛选出和前一代种群规模相同的子代,避免优势解丢失。实验结果表明:HGEMOFA能有效增强解的收敛性和多样性。 展开更多
关键词 多目标优化 萤火虫算法 层级引导 莱维飞行 变异
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部