The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al ele...The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al elemental powder preplaced on the austenitic stainless steel substrate to produce a coating for further processing. The as-received coating was subjected to FSP treatment, processed by a rotary tool rod made of WC?Co alloy, to obtain sample for inspection. Microstructure, phase constitutions, hardness and wear property were investigated by methods of scanning electronic microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) microanalysis, and X-ray diffraction (XRD), hardness test alongside with dry sliding wear test. The results show that the severe deformation effect exerted on the specimen resulted in an ultra-fine grain layer of about 100μmin thickness and grain size of 1?2μm. Synergy between introduction of WC particles to the deformation layer and deformation strengthening contributes greatly to the increase in hardness and friction resistance. An interlocking bonding between the coating and matrix which significantly improves bonding strength was formed due to the severe deformation effect.展开更多
The Ti-47Al-2Nb-2Cr-0.2W alloy sheets were obtained by hot pack rolling. The as-rolled sheet has an inhomogeneous duplex microstructure composed of elongated gamma grains and lamellar colonies. Heat treatments were co...The Ti-47Al-2Nb-2Cr-0.2W alloy sheets were obtained by hot pack rolling. The as-rolled sheet has an inhomogeneous duplex microstructure composed of elongated gamma grains and lamellar colonies. Heat treatments were conducted on the as-rolled sheets. The results show that the microstructures with different sizes and grain boundary morphologies were developed after different heat treatments. A coarse fully lamellar structure can be refined if the heating time, together with the cooling rate, is appropriately controlled. The grain growth exponent is found to be approximately 0.2, and the activation energy of grain boundary migration of the alloy is around 225 kJ/mol.展开更多
Immiscible Cu-W alloy thin films were prepared using dual-target magnetron sputtering deposition process. The structure evolution of Cu-W thin films during preparation was investigated by X-ray diffraction, transmissi...Immiscible Cu-W alloy thin films were prepared using dual-target magnetron sputtering deposition process. The structure evolution of Cu-W thin films during preparation was investigated by X-ray diffraction, transmission electron microscopy and high resolution transmission electron microscopy. In the initial stage of dual-target magnetron sputtering deposition process, an amorphous phase formed; then it crystallized and the analogy spinodal structure formed due to the bombardment of the sputtered particles during sputtering deposition process, the surface structure of the film without the bombardment of the sputtered particles was the amorphous one, the distribution of the crystalline and amorphous phase showed layer structure. The solid solubility with the analogy spinodal structure was calculated using the Vegard law. For Cu-13.7%W (mole fraction) film, its structure was composed of Cu-ll%W solution, Cu-37%W solution and pure Cu; for Cu 14.3%W film, it was composed of Cu-15%W solution, Cu-38%W solution, and pure Cu; for Cu-18.1%W film, it was composed of Cu-19%W solution, Cu-36% W solution and pure Cu.展开更多
基金Projects(51571214,51301205,51101126)supported by the National Natural Science Foundation of ChinaProject(P2014-07)supported by the Open Fund of State Key Laboratory of Materials Processing and Die&Mould Technology,China+4 种基金Project(20130162120001)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(K1308034-11)supported by the Changsha Municipal Science and Technology Plan,ChinaProjects(2015GK3004,2015JC3006)supported by the Science and Technology Project of Hunan Province,ChinaProject supported by the Innovation-driven Plan in Central South University,ChinaProject supported by the Independent Project of State Key Laboratory of Powder Metallurgy of Central South University,China
文摘The ultra-fine structured Ni?Al?WC layer with interlocking bonding was fabricated on austenitic stainless steel by combination of laser clad and friction stir processing (FSP). Laser was initially applied to Ni?Al elemental powder preplaced on the austenitic stainless steel substrate to produce a coating for further processing. The as-received coating was subjected to FSP treatment, processed by a rotary tool rod made of WC?Co alloy, to obtain sample for inspection. Microstructure, phase constitutions, hardness and wear property were investigated by methods of scanning electronic microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) microanalysis, and X-ray diffraction (XRD), hardness test alongside with dry sliding wear test. The results show that the severe deformation effect exerted on the specimen resulted in an ultra-fine grain layer of about 100μmin thickness and grain size of 1?2μm. Synergy between introduction of WC particles to the deformation layer and deformation strengthening contributes greatly to the increase in hardness and friction resistance. An interlocking bonding between the coating and matrix which significantly improves bonding strength was formed due to the severe deformation effect.
基金Project(2011CB605505)supported by the National Basic Research Program of ChinaProject(51174233)supported by the National Natural Science Foundation of China
文摘The Ti-47Al-2Nb-2Cr-0.2W alloy sheets were obtained by hot pack rolling. The as-rolled sheet has an inhomogeneous duplex microstructure composed of elongated gamma grains and lamellar colonies. Heat treatments were conducted on the as-rolled sheets. The results show that the microstructures with different sizes and grain boundary morphologies were developed after different heat treatments. A coarse fully lamellar structure can be refined if the heating time, together with the cooling rate, is appropriately controlled. The grain growth exponent is found to be approximately 0.2, and the activation energy of grain boundary migration of the alloy is around 225 kJ/mol.
文摘Immiscible Cu-W alloy thin films were prepared using dual-target magnetron sputtering deposition process. The structure evolution of Cu-W thin films during preparation was investigated by X-ray diffraction, transmission electron microscopy and high resolution transmission electron microscopy. In the initial stage of dual-target magnetron sputtering deposition process, an amorphous phase formed; then it crystallized and the analogy spinodal structure formed due to the bombardment of the sputtered particles during sputtering deposition process, the surface structure of the film without the bombardment of the sputtered particles was the amorphous one, the distribution of the crystalline and amorphous phase showed layer structure. The solid solubility with the analogy spinodal structure was calculated using the Vegard law. For Cu-13.7%W (mole fraction) film, its structure was composed of Cu-ll%W solution, Cu-37%W solution and pure Cu; for Cu 14.3%W film, it was composed of Cu-15%W solution, Cu-38%W solution, and pure Cu; for Cu-18.1%W film, it was composed of Cu-19%W solution, Cu-36% W solution and pure Cu.